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Tutorial 1

Determinants of childhood
undernutrition in Zambia: A tutorial on
Bayesian semiparametric regression using
MCMC techniques

1.1 Introduction

This tutorial demonstrates the usage of BayesX for analysing Bayesian semiparametric regression
models based on MCMC simulation techniques. As an example, we consider data on childhood
undernutrition in Zambia. This data has already been analysed in Kandala et al. (2001) and we
will use the same model that has been developed there. Since our focus is on demonstrating how
regression models can be estimated in BayesX, we do not discuss or interpret the estimation results
but simply give the commands to obtain them.

The main focus in this tutorial is on full Bayesian inference based on MCMC techniques. BayesX
also supports two further inferential concepts: empirical Bayes inference based on mixed model
methodology and a method for simultaneously selecting variables and smoothing parameters, which
are described in two additional tutorials. All tutorials are designed to be self-contained and describe
all features of BayesX in detail, that will be needed throughout the tutorial. Users who are already
familiar with the usage of dataset and map objects may therefore skim through sections 1.3–1.5.

The theoretical background of Bayesian semiparametric regression will not be described in this
tutorial. The reference manual may serve as an introduction, full details about the estimation
techniques for the full Bayesian approach can be found in Fahrmeir & Lang (2001a), Fahrmeir &
Lang (2001b), Lang & Brezger (2004) and Brezger & Lang (2006). Survival models are treated
in Hennerfeind, Brezger & Fahrmeir (2006) while count data regression is covered in Fahrmeir &
Osuna (2006).

1.2 Description of the data set

Undernutrition among children is usually determined by assessing an anthropometric status of the
children relative to a reference standard. In our example, undernutrition is measured by stunting
or insufficient height for age, indicating chronic undernutrition. Stunting for a child i is determined
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4 Tutorial 1. A tutorial on Bayesian semiparametric regression using MCMC techniques

using a Z-score defined as

Zi =
AIi −MAI

σ

where AI refers to the child‘s anthropometric indicator (height at a certain age in our example),
while MAI and σ correspond to the median and the standard deviation in the reference population,
respectively.

Our main interest is on modelling the dependence of undernutrition on covariates including the
age of the child, the body mass index of the child‘s mother, the district the child lives in and some
further categorial covariates. Table 1.1 gives a description of the variables that we will use in our
model.

Variable Description

hazstd standardised Z-score for stunting
bmi body mass index of the mother
agc age of the child in months
district district where the mother lives
rcw mother‘s employment status with categories “working” (= 1) and “not

working” (= −1)
edu1/2 mother‘s educational status with categories “complete primary but incom-

plete secondary” (edu1 = 1), “complete secondary or higher” (edu2 = 1)
and “no education or incomplete primary” (edu1 = edu2 = −1)

tpr locality of the domicile with categories “urban” (= 1) and “rural” (= −1)
sex gender of the child with categories “male” (= 1) and “female” (= −1)

Table 1.1: Variables in the undernutrition data set.

1.3 Getting started

After having started the graphical user interface version of BayesX, a main window with four sub-
windows appears on the screen. These are the command window for entering and executing code,
the output window for displaying results, the review window for easy access to past commands, and
the object browser that displays all objects currently available. In the command line version of
BayesX, there are, of course, no sub-windows but only command line prompt to enter commands.

BayesX is object oriented although the concept is limited, i.e. inheritance and other concepts of
object oriented languages like C++ or R are not supported. For every object type, a number of
object-specific methods can be applied to a particular object instance. The syntax for generating
a new object in BayesX is

> objecttype objectname

where objecttype defines the type of the object to be created, e.g. dataset, and objectname is the
name to be assigned to the new object.

The rest of the tutorial is separated in seven parts dealing with the different steps of estimating a
regression model with MCMC simulation techniques. In section 1.4, we create a dataset object to
store, handle and manipulate the data. We will also give a brief description of some methods that
may be applied to dataset objects. Since we want to estimate a spatial effect of the district in which
a child lives, we need the boundaries of the districts to compute the neighbourhood information
of the map of Zambia. This information will be stored in a map object. Section 1.5 describes how
to create and handle these objects. Estimation of the regression model is carried out in section
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1.6 using a bayesreg object. The next two sections describe how to visualise the estimation results
and how to customise the obtained graphics. Section 1.9 describes post estimation commands
which can be used to investigate the sampling paths and the autocorrelation functions of the
estimated parameters. In a last section we perform a sensitivity analysis to assess the impact of
hyperparameter choices on our estimation results.

If you have not done so yet, please download the data set and the boundary file associated with
this tutorial now (from the BayesX homepage). You may also want to download the batch file
containing the commands used in the following sections. Please note, that paths within these
commands must be changed according to the storage location of the corresponding files on your
hard disk.

1.4 Reading data set information

In a first step, we read the available data set information into BayesX. Therefore we create a dataset
object named d:

> dataset d

We store the data in d using the method infile:

> d.infile, maxobs=5000 using c:\data\zambia.raw

Note, that we assume the data to be provided in the external file c:\data\zambia.raw. The first
few lines of this file look like this:

hazstd bmi agc district rcw edu1 edu2 tpr sex

0.0791769 21.83 4 81 -1 1 0 1 -1

-0.2541965 21.83 26 81 -1 1 0 1 -1

-0.1599823 20.43 56 81 1 -1 -1 1 1

0.1733911 22.27 6 81 -1 0 1 1 1

In our example, the file contains the variable names in the first line. Therefore, it is not necessary
to specify them in the infile command. If the file contained only the data without variable names,
we would have to supply them after the keyword infile:

> d.infile hazstd bmi agc district rcw edu1 edu2 tpr sex, maxobs=5000

using c:\data\zambia.raw

Option maxobs can be used to speed up the execution time of the infile command. If maxobs is
specified, BayesX allocates enough memory to store all the data while the total amount of required
memory is unknown in advance if maxobs remains unspecified. For larger data sets, this may cause
BayesX to start reading the data set information several times because the currently allocated
memory is exceeded. However, this is only meaningful for larger data sets with more than 10,000
observations and could therefore be omitted in our example.

A second option that may be added to the infile command is the missing option to indicate
missing values. Specifying for example missing = M defines the letter ‘M’ as an indicator for a
missing value. The default for missing values are a period ‘.’ and ‘NA’ (which remain valid indicators
for missing values even if an additional indicator is defined by the missing option).

After having read the dataset information, we can inspect the data visually. Executing the com-
mand

> d.describe

opens an Object-Viewer window containing the data in form of a spreadsheet (see Figure 1.1). The
same can also be achieved by double-clicking on the dataset object in the object browser.
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Figure 1.1: A screenshot of the dataset.

Further methods allow to examine the variables in the dataset object. For a categorial variable such
as sex , the tabulate command may be used to produce a frequency table:

> d.tabulate sex

resulting in

Variable: sex

Value Obs Freq Cum

-1 2451 0.5057 0.5057

1 2396 0.4943 1

being printed in the output window. For continuous variables, the descriptive command prints
several characteristics of the variable in the output window. E.g., executing

> d.descriptive bmi

leads to

Variable Obs Mean Median Std Min Max

bmi 4847 21.944349 21.4 3.2879659 12.8 39.29

1.5 Map objects

In the following, we will estimate a spatially correlated effect of the district in which a child
lives. Therefore we need the boundaries of the districts in Zambia to compute the neighbourhood
information of the map of Zambia. We therefore create a map object

> map m

and read the boundaries using the infile command of map objects:

> m.infile using c:\data\zambia.bnd

Having read the boundary information, BayesX automatically computes the neighbourhood matrix
of the map.
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The file following the keyword using is assumed to contain the boundaries in form of closed
polygons. To give an example we print a small part of the boundary file of Zambia. The map
corresponding to the section of the boundary file can be found in Figure 1.2.

...

”52”,48
28.080507,-12.537530
28.083376,-12.546980
28.109501,-12.548961
28.134972,-12.566787
28.154797,-12.585320
28.165771,-12.593912
28.165771,-12.593912
28.160769,-12.609917
28.152800,-12.633824
28.144831,-12.657733
28.132877,-12.677656
28.120922,-12.701565
28.120922,-12.717505
28.120922,-12.741411
28.116938,-12.761335
28.108969,-12.777274
28.100998,-12.793213
28.089045,-12.817122
28.085060,-12.837045
28.081076,-12.856968
28.081076,-12.876892
28.080862,-12.884153
28.080862,-12.884153
28.076630,-12.879521
28.031454,-12.881046
27.974281,-12.884675
27.910725,-12.878692
27.686228,-12.880120
27.665676,-12.854732
27.653563,-12.818301
27.639263,-12.759848
27.648254,-12.699927
27.662464,-12.680613
27.662464,-12.680613
27.666534,-12.675080
27.703260,-12.679779
27.752020,-12.695455
27.797932,-12.702188
27.836775,-12.707567
27.867813,-12.699892
27.902308,-12.667418
27.922668,-12.630853
27.943035,-12.596350
27.963434,-12.571486
27.983179,-12.563844
28.016331,-12.554779
28.070650,-12.542199
28.080507,-12.537530

...

For each region of the map, the boundary file must contain the identifying name of the region, the
polygons that form the boundary of the region, and the number of lines the polygon consists of.
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The first line always contains the region code surrounded by quotation marks and the number of
lines the polygon of the region consists of. The code and the number of lines must be separated
by a comma. The subsequent lines contain the coordinates of the straight lines that form the
boundary of the region. The straight lines are represented by the coordinates of their end points.
Coordinates must be separated by a comma. Note that the first and the last point must be identical
(see the example above) to obtain a closed polygon. Compare chapter 5 of the reference manual
for a detailed description of some special cases, e.g. regions divided into subregions.

Figure 1.2: Corresponding graph of the section of the boundary file

Map objects may be visualised using method describe:

> m.describe

resulting in the graph shown in Figure 1.3. Additionally, describe prints further information about
the map object in the output window including the name of the object, the number of regions, the
minimum and maximum number of neighbours and the bandwidth of the corresponding adjacency
or neighbourhood matrix:

MAP m

Number of regions: 54

Minimum number of neighbors: 1

Maximum number of neighbors: 9

Bandsize of corresponding adjacency matrix: 24

Figure 1.3: The districts within Zambia.

The numerical complexity associated with the estimation of structured spatial effects using MCMC
techniques depends essentially on the structure of the neighbourhood matrix. Often the geograph-
ical information stored in a boundary file does not represent the “ideal” ordering of the districts or
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regions (with respect to the estimation problem). Therefore it may be useful to reorder the map
using method reorder:

> m.reorder

Usually, reordering results in a smaller bandwidth although the bandwidth is not the criterion that
is minimised by reorder. Instead the envelope of the neighbourhood matrix is minimised (compare
George & Liu (1981)).

In order to avoid reordering the map object every time you start BayesX, it is useful to store the
reordered version in a separate file. This can be achieved using the outfile command of map
objects:

> m.outfile, replace using c:\data\zambiasort.bnd

The reordered map is now stored in the given file. Note, that specifying the option replace allows
BayesX to overwrite an existing file with the same name. Without this option, an error message
would be raised if the given file is already existing.

Reading the boundary information from an external file and computing the neighbourhood matrix
may be a computationally intensive task if the map contains a large number of regions or if the
polygons are given in great detail. To avoid doing these computation in every BayesX session, we
store the neighbourhood information in a graph file using method outfile together with the graph
option:

> m.outfile, replace graph using c:\data\zambiasort.gra

A graph file stores the nodes and the edges of a graph G = (N,E), see for example George & Liu
(1981) for a first introduction into graph theory. A graph is a convenient way of representing the
neighbourhood structure of a geographical map. The nodes of the graph correspond to the region
codes. The neighbourhood structure is represented by the edges of the graph. In some situations
it may be useful to define weights associated with the edges of a graph which can be be stored in
the graph file as well.

We now describe the structure of a graph file as it is expected by BayesX. The first line of a graph
file must contain the total number of nodes of the graph. In the remaining lines, the nodes of
the graph together with their edges and associated weights are specified. One node corresponds
to three consecutive lines. The first of the three lines must contain the name of the node, which
typically will be the name of the geographical region. In the second line, the number of edges of
that particular node is given. The third line contains the corresponding edges of the node, where
an edge is given by the index of a neighbouring node. The index starts with zero. For example, if
the fourth and the seventh node/region in the graph file are connected/neighbours, the edge index
for the fourth node/region is 6 and for the seventh node/region 3.

We illustrate the structure of a graph file with an example. The following few lines are the beginning
of the graph file corresponding to the reordered map of Zambia:

57
87
1
5
76
3
9 8 7
67
2
10 9

...
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The first line specifies the total number of nodes, in the present example 57 nodes. The subsequent
three lines correspond to the node with name ‘87’, which is the first region in the reordered map
of Zambia. Region ‘87’ has 1 neighbour, namely the sixth node appearing in the graph file. Once
again, note that the index starts with zero, i.e. 0 corresponds to the first node, 1 corresponds to
the second node and so on. Lines 5 to 7 in the example correspond to node ‘76’ and its three
neighbours and lines 8 to 10 correspond to node ‘67’.

In a graph file it is also possible to specify weights associated with the edges of the nodes. Since in
the preceding example no weights are explicitly specified, all weights are automatically defined to
be equal to one. Nonequal weights are specified in the graph file by simply adding them following
the edges of a particular node. An example of the beginning of a graph file with weights is given
below:

57
87
1
5 1.44172
76
3
7 8 9 0.707424 1.3816 0.682372
67
2
9 10 1.67424 0.8406

...

Here the edge of the first node ‘87’ has weight 1.44172, the edges of the second node have weights
0.707424, 1.3816 and 0.682372.

Note, that graph files allow the estimation of very general correlated effects based on Markov
random fields. While the polygons stored in a boundary file represent geographical information,
the nodes and edges of a graph may define arbitrary neighbourhood structures. For example,
the definition of three-dimensional Markov random fields representing space-time interactions is
possible.

To see how storing maps in graph files affects the computation time of the infile command, we
create a second map object and read in the information from the graph file. Again, we have to
specify the keyword graph:

> map m1

> m1.infile, graph using c:\data\zambiasort.gra

As you should have noticed, reading geographical information from a graph file is usually much
faster than reading from a boundary file. However, using graph files also has a drawback. Since
they do no longer contain the full information on the polygons forming the map, we can not visualise
a map object created from a graph file. Trying to do so

> m1.describe

raises an error message. This implies, that visualising estimation results of spatial effects can only
be based on map objects created from boundary files, although estimation can be carried out using
graph files. Since we will work with the map object m in the following, we delete m1:

> drop m1
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1.6 Bayesian semiparametric regression

To estimate a regression model using MCMC simulation techniques, we first create a bayesreg object:

> bayesreg b

By default, estimation results are written to the subdirectory output of the installation directory.
In this case, the default filenames are composed of the name of the bayesreg object and the type of
the specific file. Usually it is more convenient to store the results in a user-specified directory. To
define this directory, we use the outfile command of bayesreg objects:

> b.outfile = c:\data\b

Note, that outfile does not only specify a directory but also a base filename (the character ‘b’
in our example). Therefore, executing the command above leads to storage of the results in the
directory c:\data and all filenames start with the character ‘b’. Of course, the base filename may
be different from the name of the bayesreg object.

In addition to parameter estimates, BayesX also gives acceptance rates for the different effects
and some further information on the estimation process. In contrast to parameter estimates, this
information is not stored automatically but is printed in the output window. Therefore it is useful
to store the contents of the output window. This can be achieved automatically by opening a log
file using the logopen command

> logopen, replace using c:\data\logmcmc.txt

After opening a log file, every information written to the output window is also stored in this file.
Option replace allows BayesX to overwrite an existing file with the same name as the specified
log file. Without replace results are appended to an existing file.

The model presented in Kandala et al. (2001) is given by the following semiparametric predictor:

η = γ0+γ1rcwγ2edu1 +γ3edu2 +γ4tpr+γ5sex+f1(bmi)+f2(agc)+f str(district)+funstr(district).

The two continuous covariates bmi and agc are assumed to have a possibly nonlinear effect on the
Z-score and are therefore modelled nonparametrically (as P-splines with second order random walk
prior in our example). The spatial effect of the district is split up into a spatially correlated part
f str(district) and an uncorrelated part funstr(district), see Fahrmeir & Lang (2001b) for a motiva-
tion. The correlated part is modelled by a Markov random field prior, where the neighbourhood
matrix and possible weights associated with the neighbours are obtained from the map object m.
The uncorrelated part is modelled by an i.i.d. Gaussian effect.

To estimate the model we use method regress of bayesreg objects:

> b.regress hazstd = rcw + edu1 + edu2 + tpr + sex + bmi(psplinerw2)

+ agc(psplinerw2) + district(spatial,map=m) + district(random),

family=gaussian iterations=12000 burnin=2000 step=10 predict using d

Options iterations, burnin and step define properties of the MCMC algorithm. The total
number of MCMC iterations is given by iterations while the number of burn in iterations is given
by burnin. Therefore we obtain a sample of 10000 random numbers with the above specifications.
Since, in general, these random numbers are correlated, we do not use all of them but thin out
the Markov chain by the thinning parameter step. Specifying step=10 as above forces BayesX to
store only every 10th sampled parameter which leads to a random sample of length 1000 for every
parameter in our example. Note, that the choice of iterations of course also affects computation
time.

If option predict is specified, samples of the deviance, the effective number of parameters pD,
and the deviance information criteria DIC of the model are computed, see Spiegelhalter et al.
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(2002). In addition, estimates for the linear predictor and the expectation of every observation are
obtained.

In the following, we reproduce the content of the output window to make the user familiar with
the estimation results produced by BayesX. Note that the output may look somewhat different
depending on the version of BayesX you are considering.

ESTIMATION RESULTS:

Predicted values:

Estimated mean of predictors, expectation of response and

individual deviances are stored in file

c:\data\b_predictmean.raw

Estimation results for the deviance:

Unstandardized Deviance (-2*Loglikelihood(y|mu))

Mean: 12688.726

Std. Dev: 12.993345

2.5% Quantile: 12663.772

10% Quantile: 12672.535

50% Quantile: 12688.173

90% Quantile: 12705.219

97.5% Quantile: 12714.784

Saturated Deviance (-2*Loglikelihood(y|mu) + 2*Loglikelihood(y|mu=y))

Mean: 4850.7212

Std. Dev: 98.805525

2.5% Quantile: 4658.3601

10% Quantile: 4719.064

50% Quantile: 4854.0429

90% Quantile: 4981.005

97.5% Quantile: 5046.1822

Samples of the deviance are stored in file

c:\data\b_deviance_sample.raw

Estimation results for the DIC:

DIC based on the unstandardized deviance

Deviance(bar_mu): 12639.017

pD: 49.708864

DIC: 12738.435

DIC based on the saturated deviance

Deviance(bar_mu): 4800.0024

pD: 50.718841

DIC: 4901.44

Estimation results for the scale parameter:

Acceptance rate: 100 %

Mean: 0.80205

Std. dev.: 0.016386

2.5% Quantile: 0.7711
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10% Quantile: 0.780591

50% Quantile: 0.801434

90% Quantile: 0.824332

97.5% Quantile: 0.835445

FixedEffects1

Acceptance rate: 100 %

Variable mean Std. Dev. 2.5% quant. median 97.5% quant.

const 0.102144 0.0468836 0.0115916 0.101498 0.196307

rcw 0.00780289 0.0136821 -0.0186219 0.00754262 0.0340403

edu1 -0.0622753 0.0265637 -0.116141 -0.0613026 -0.0125551

edu2 0.235591 0.0465318 0.142865 0.234172 0.325396

tpr 0.0898013 0.0216879 0.0483689 0.0901556 0.132811

sex -0.0585167 0.0125313 -0.0826825 -0.0583656 -0.0339112

Results for fixed effects are also stored in file

c:\data\b_FixedEffects1.res

f_bmi_pspline

Acceptance rate: 100 %

Results are stored in file

c:\data\b_f_bmi_pspline.res

Postscript file is stored in file

c:\data\b_f_bmi_pspline.ps

Results may be visualized using method ’plotnonp’

Type for example: objectname.plotnonp 1

f_bmi_pspline_variance

Acceptance rate: 100 %

Estimation results for the variance component:

Mean: 0.00174445

Std. dev.: 0.0022271

2.5% Quantile: 0.000265649

10% Quantile: 0.000419949

50% Quantile: 0.00112203

90% Quantile: 0.00375514

97.5% Quantile: 0.00654175

Results for the variance component are also stored in file

c:\data\b_f_bmi_pspline_var.res

Estimation results for the smoothing parameter:

Mean: 937.489 (df: 3.35257)

Std. dev.: 773.149
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2.5% Quantile: 121.533 (df: 5.531)

10% Quantile: 211.716 (df: 4.85283)

50% Quantile: 717.565 (df: 3.58964)

90% Quantile: 1910.98 (df: 2.78449)

97.5% Quantile: 3038.87 (df: 2.46105)

Results for the smoothing parameter are also stored in file

c:\data\b_f_bmi_pspline_lambda.res

f_agc_pspline

Acceptance rate: 100 %

Results are stored in file

c:\data\b_f_agc_pspline.res

Postscript file is stored in file

c:\data\b_f_agc_pspline.ps

Results may be visualized using method ’plotnonp’

Type for example: objectname.plotnonp 3

f_agc_pspline_variance

Acceptance rate: 100 %

Estimation results for the variance component:

Mean: 0.00630648

Std. dev.: 0.00788173

2.5% Quantile: 0.00124029

10% Quantile: 0.00179477

50% Quantile: 0.0041396

90% Quantile: 0.0121621

97.5% Quantile: 0.0228385

Results for the variance component are also stored in file

c:\data\b_f_agc_pspline_var.res

Estimation results for the smoothing parameter:

Mean: 234.684 (df: 6.28883)

Std. dev.: 177.494

2.5% Quantile: 34.9805 (df: 9.37168)

10% Quantile: 66.326 (df: 8.23766)

50% Quantile: 194.159 (df: 6.55631)

90% Quantile: 442.421 (df: 5.457)

97.5% Quantile: 647.435 (df: 5.0029)

Results for the smoothing parameter are also stored in file

c:\data\b_f_agc_pspline_lambda.res

f_district_spatial

Acceptance rate: 100 %
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Results are stored in file

c:\data\b_f_district_spatial.res

Postscript file is stored in file

c:\data\b_f_district_spatial.ps

Results may be visualized in BayesX using method ’drawmap’

Type for example: objectname.drawmap 5

f_district_spatial_variance

Acceptance rate: 100 %

Estimation results for the variance component:

Mean: 0.0360104

Std. dev.: 0.0179351

2.5% Quantile: 0.0105888

10% Quantile: 0.0165585

50% Quantile: 0.0324881

90% Quantile: 0.0600347

97.5% Quantile: 0.0826229

Results for the variance component are also stored in file

c:\data\b_f_district_spatial_var.res

Estimation results for the smoothing parameter:

Mean: 28.7933 (df: 0)

Std. dev.: 16.8091

2.5% Quantile: 9.73429 (df: 0)

10% Quantile: 13.3299 (df: 0)

50% Quantile: 24.7758 (df: 0)

90% Quantile: 48.715 (df: 0)

97.5% Quantile: 75.0528 (df: 0)

Results for the smoothing parameter are also stored in file

c:\data\b_f_district_spatial_lambda.res

f_district_random

Acceptance rate: 100 %

Results for random effects are stored in file

c:\data\b_f_district_random.res

Results for the sum of the structured and unstructured

spatial effects are stored in file

c:\data\b_district_spatialtotal.res

f_district_random_variance

Acceptance rate: 100 %

Estimation results for the variance component:
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Mean: 0.00788548

Std. dev.: 0.00618319

2.5% Quantile: 0.000696144

10% Quantile: 0.00138013

50% Quantile: 0.00645178

90% Quantile: 0.0165836

97.5% Quantile: 0.0237649

Results for the variance component are also stored in file

c:\data\b_f_district_random_var.res

Files of model summary:

---------------------------------------------------------------------------

Batch file for visualizing effects of nonlinear functions is stored in file

c:\data\b_graphics.prg

NOTE: ’input filename’ must be substituted by the filename of the boundary-file

---------------------------------------------------------------------------

Batch file for visualizing effects of nonlinear functions

in R / S-Plus is stored in file

c:\data\b_r_splus.txt

NOTE: ’input filename’ must be substituted by the filename of the boundary-file

---------------------------------------------------------------------------

Latex file of model summaries is stored in file

c:\data\b_model_summary.tex

---------------------------------------------------------------------------

In addition to the information being printed to the output window, results for each effect are
written to external ASCII files. The names of these files are given in the output window, compare
the previous pages. The files contain the posterior mean and median, the posterior 2.5%, 10%, 90%
and 97.5% quantiles, and the corresponding 95% and 80% posterior probabilities of the estimated
effects. For example, the beginning of the file c:\data\b_f_bmi_pspline.res for the effect of bmi
may look like this:

intnr bmi pmean pqu2p5 pqu10 pmed pqu90 pqu97p5 pcat95 pcat80

1 12.8 -0.284065 -0.660801 -0.51678 -0.283909 -0.0585753 0.085998 0 -1

2 13.15 -0.276772 -0.609989 -0.483848 -0.275156 -0.070517 0.0572406 0 -1

3 14.01 -0.258674 -0.515628 -0.416837 -0.257793 -0.10009 -0.00289024 -1 -1

The posterior quantiles and posterior probabilities may be changed by the user via the options
level1 and level2. For example, specifying level1=99 and level2=70 in the option list of
the regress command leads to the computation of 0.5%, 15%, 85% and 99.5% quantiles of the
posterior. The defaults are level1=95 and level2=80.

Some nonparametric effects are visualised by BayesX automatically and the resulting graphs
are stored in ps format. For example, the effect of bmi is visualised in the file
c:\data\b_f_bmi_pspline.ps (compare the results on the previous pages for the other filenames).
In addition to the ps files a file containing the commands to reproduce the graphics is stored in the
output directory. In our example the name of the file is c:\data\b_graphics.prg. The advantage
is that additional options may be added by the user to customise the graphs (compare the following
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two sections).

Moreover, a file with ending .tex is created in the outfile directory. This file contains a summary
of the estimation results and may be compiled using LATEX.

Having finished the estimation, we may close the log file by typing

> logclose

Note, that the log file is closed automatically when you exit BayesX.

1.7 Visualising estimation results

BayesX provides three possibilities to visualise estimation results:

• As mentioned in the previous section, certain results are automatically visualised by BayesX
and stored in ps files.

• Post estimation commands of bayesreg objects allow to visualise results after having executed
a regress command.

• Graph objects may be used to produce graphics using the ASCII files containing the estima-
tion results. In principle, graph objects allow the visualisation of any content of a dataset
object. Graph files are also used in the batch file containing the commands to reproduce the
automatically generated graphics.

In this section, we describe the general usage of the post estimation commands as well as the
commands for the usage with graph objects to enable the user to reproduce the automatically
generated plots directly in BayesX. Section 1.8 describes how to customise plots.

1.7.1 Post estimation commands

After having estimated a regression model, plots for nonparametric effects of metrical covariates
can be produced using the post estimation command plotnonp:

> b.plotnonp 1

and

> b.plotnonp 3

produce the graphs shown in Figure 1.4 in an object-viewer window. The numbers following the
plotnonp command depend on the order in which the model terms have been specified (and an
internal ordering of the effect types). The numbers are supplied in the output window after estima-
tion, compare the results in the previous section.

By default, the plots contain the posterior mean and pointwise credible intervals according to the
levels specified in the regress command. So by default the plot includes pointwise 80% and 95%
credible intervals.

A plot may be stored in ps format using the outfile option. Executing

> b.plotnonp 1, replace outfile = c:\data\f_bmi.ps

stores the plot for the estimated effect of bmi in the file c:\data\f_bmi.ps. Again, specifying
replace allows BayesX to overwrite an existing file. Note that BayesX does not display the graph
on the screen if the option outfile is specified.

Estimation results for spatial effects are best visualised by drawing the respective map and colouring
the regions of the map according to some characteristic of the posterior, e.g. the posterior mean.
For the structured spatial effect this can be achieved using the post estimation command drawmap
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Figure 1.4: Effect of the body mass index of the child‘s mother and of the age of the child together
with pointwise 80% and 95% credible intervals.

> b.drawmap 5

which results in the graph shown in Figure 1.5.

-0.320786 0 0.24232

Figure 1.5: Posterior mean of the structured spatial effect.

1.7.2 Graph Objects

The commands presented in the previous subsection work only after having estimated a regression
model in the current BayesX session. However, it may of course also be useful to visualise results
of former analyses. This can be achieved using graph objects. Note again that graph files are also
used in the batch file containing the commands to reproduce the automatically generated graphics.
Therefore, the purpose of this subsection is also to enable the user to understand the content of
this batch file.

In a first step, we read the estimation results into a dataset object. For example, the estimation
results for the effect of bmi can be read into BayesX by executing the commands

> dataset res

> res.infile using c:\data\b_f_bmi_pspline.res

Now the estimation results (or any content of a dataset object) may be visualised using a graph
object which we create by typing
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> graph g

The results stored in the dataset object res are now visualised using the plot command of graph
objects. Executing

> g.plot bmi pmean pqu2p5 pqu10 pqu90 pqu97p5 using res

reproduces the graph in Figure 1.4.

Similar as for plotnonp, the direct usage of the drawmap command is only possible after executing
a regress command. However, using graph objects again allows us to visualise results that have
been stored in a file.

First, we read the information contained in this file into a dataset object. For example, the following
command

> res.infile using c:\data\b_f_district_spatial.res

stores the estimation results for the structured spatial effect in the dataset object res. Now we
can visualise the posterior mean using method drawmap of graph objects leading again to the graph
shown in Figure 1.5:

> g.drawmap pmean district, map=m using res

Since – in contrast to a bayesreg object – no map object is associated with a graph object we have
to specify the map that we want to use explicitly in the option list.

Using graph objects also allows us to plot other characteristics of the posterior than the posterior
mean. For instance the posterior 95% probabilities may be visualised by

> g.drawmap pcat95 district, map=m using res

The result is shown in Figure 1.6.

-1.0 0 1.0

Figure 1.6: Posterior 95% probability of the structured spatial effect.

A further advantage of graph objects is, that they allow to visualise the estimation results for the
uncorrelated spatial effects. Since these are modelled as unstructured random effects, BayesX is
unable to recognise them as spatial effects. However, proceeding as follows gives us the possibility
to plot the unstructured spatial effect shown in Figure 1.7:

> res.infile using c:\data\b_f_district_random.res

> g.drawmap pmean district, map=m using res
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-0.0972329 0 0.100343

Figure 1.7: Posterior mean of the unstructured spatial effect.

1.8 Customising graphics

This section describes how to customise graphics created in BayesX. All options are described for
the usage with the post estimation commands but may be used with graph files as well. Hence,
the options presented in this section also enable the user to modify the batch file containing the
commands to reproduce the automatically generated graphics.

For the presentation of nonparametric effects it may be desirable to include only one of the credible
intervals into the plot. This is achieved by specifying the levels option. Possible values of this
option are 1 and 2, corresponding to the levels specified in the regress command (compare section
1.6). If the default values of level1 and level2 have been used, specifying level=2 in the plotnonp
command causes BayesX to plot the 80% credible interval only (Figure 1.8):

> b.plotnonp 1, levels=2

 12.8  19.4  26  32.7  39.3

-0.5

-0.28

-0.05

 0.17

 0.4

Figure 1.8: Effect of the body mass index of the child‘s mother with pointwise 80% credible intervals
only.

It may be useful to add some more information to the graphs of nonparametric effects to distinguish
more obviously between different covariates. Ways to do so are the specification of a title or the
specification of axis labels. Both possibilities are supported by BayesX as demonstrated in the
following examples (compare Figure 1.9 for the resulting plots):

> b.plotnonp 1, title="Mother body mass index"

> b.plotnonp 1, xlab="bmi" ylab="f_bmi" title="Mother body mass index"
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Figure 1.9: Specification of title and axis labels.

By default, BayesX displays x- and y-axis with five equidistant ticks according to the range of the
data that is to be visualised. These defaults may be overwritten using the options xlimbottom,
xlimtop and xstep for the x-axis and ylimbottom, ylimtop and ystep for the y-axis, respectively.
The usage of these options is more or less self-explanatory and is demonstrated in the following
commands which lead to the graph shown in Figure 1.10.

> b.plotnonp 1, xlab="bmi" ylab="f_bmi" title="Mother body mass index"

ylimbottom=-0.8 ylimtop=0.6 ystep=0.2 xlimbottom=12 xlimtop=40

Figure 1.10 also includes a graph for the effect of the age of the child that is customised in the
same way as for the effect of bmi .

> b.plotnonp 3, xlab="age" ylab="f_age" title="Age of the child in months"

ylimbottom=-0.3 ystep=0.3 xlimbottom=0 xlimtop=60 xstep=10
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Figure 1.10: Re-defining x- and y-axis.

Now we turn to the options for method drawmap. By default, drawmap uses grey scales to represent
different values of the posterior mean. Using the option color forces BayesX to use different colours
instead. Here the default would be to represent higher values through green colours and smaller
values through red colours. Specifying swapcolors switches this definition. Therefore the following
command
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> b.drawmap 5, color swapcolors

leads to the graph shown in Figure 1.11 with higher values being represented through red colours
and smaller values through green colours. An alternative color scheme can be requested by adding
option hcl.

-0.320786 0 0.24232

Figure 1.11: Posterior mean of the structured spatial effect in colour.

Similar options as for the visualisation of nonparametric effects exist for method drawmap. For
example, a title may be included by specifying the option title

> b.drawmap 5, color swapcolors title="Structured spatial effect"

or the range of values to be displayed may be defined using the options lowerlimit and upperlimit:

> b.drawmap 5, color swapcolors title="Structured spatial effect" lowerlimit=-0.3

upperlimit=0.3

The graph produced by the second command is shown in Figure 1.12.

1.9 Autocorrelation functions and sampling paths

Bayesreg objects provide some post estimation commands to get sampled parameters or to plot
autocorrelation functions of sampled parameters. For example

> b.plotautocor, maxlag=250

computes and displays the autocorrelation functions for all estimated parameters with maxlag

specifying the maximum lag number (Figure 1.13 shows a small part of the resulting graph).

If the number of parameters is large, this may be computationally expensive, so BayesX pro-
vides a second possibility to compute autocorrelation functions. Adding the option mean to the
plotautocor command as in

> b.plotautocor, mean

leads to the computation of only the minimum, mean and maximum autocorrelation functions.
The result for the scale parameter is shown in Figure 1.14.
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Figure 1.12: Specifying a title and the range of the plot for spatial effects.
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Figure 1.13: Autocorrelation function for the scale parameter and the intercept.

Note, that executing the plotautocor command also stores the computed autocorrelation functions
in a file named autocor.raw in the output directory of the bayesreg object. The content of this file
can then be visualised in your favorite statistical software package.

To save memory, the sampling paths of the estimated parameters are only stored temporarily by
default and will be destroyed, when the corresponding bayesreg object is deleted. If we want to
store the sampling paths permanently, we have to execute the getsample command

> b.getsample

which stores the sampled parameters in ASCII files in the output directory. To avoid too large
files, the samples are typically partitioned into several files. Executing the getsample command
also produces ps files of the sampling paths in the output directory (compare Figure 1.15 for the
content of one of these files).

1.10 Sensitivity analysis

In some situations, the estimation results of a full Bayesian semiparametric regression model depend
on the choice of hyperparameters, e.g. the parameters a and b defining the inverse gamma prior of
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Figure 1.14: Minimum, mean and maximum autocorrelation function for the scale parameter.

the variances of nonparametric and spatial effects. Hence, it is often recommended to check how
sensitive the results are with respect to changes in the hyperparameters. In the following we will
re-estimate the model from section 1.6 with different choices for the hyperparameters a and b for
each effect in the model. The standard choices for a and b are a = b = 0.001. As a first trial we
choose a smaller value for a and b:

> b.regress hazstd = rcw + edu1 + edu2 + tpr + sex

+ bmi(psplinerw2,a=0.00001,b=0.00001) + agc(psplinerw2,a=0.00001,b=0.00001)

+ district(spatial,map=m,a=0.00001,b=0.00001)

+ district(random,a=0.00001,b=0.00001), family=gaussian iterations=12000

burnin=2000 step=10 predict using d

Figure 1.16 shows the results for the nonparametric effects with this choice of hyperparameters.
Obviously, the estimated functions are somewhat smoother but they do not differ that much from
the estimates with the standard choices.

Now we try two further choices for the hyperparameters, each with a = 1 and b small. We estimate
models with b = 0.005 and b = 0.00005:

> b.regress hazstd = rcw + edu1 + edu2 + tpr + sex + bmi(psplinerw2,a=1,b=0.005)

+ agc(psplinerw2,a=1,b=0.005) + district(spatial,map=m,a=1,b=0.005)

+ district(random,a=1,b=0.005), family=gaussian iterations=12000 burnin=2000

step=10 predict using d
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Figure 1.15: Sampling path of the intercept.
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Figure 1.16: Results for the nonparametric effects with hyperparameters a = b = 0.00001 for
nonparametric and spatial effects.

> b.regress hazstd = rcw + edu1 + edu2 + tpr + sex + bmi(psplinerw2,a=1,b=0.00005)

+ agc(psplinerw2,a=1,b=0.00005) + district(spatial,map=m,a=1,b=0.00005)

+ district(random,a=1,b=0.00005), family=gaussian iterations=12000 burnin=2000

step=10 predict using d

Figure 1.17 and 1.18 contain the results for the nonparametric effects for the two choices of hyper-
parameters.
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Figure 1.17: Results for the nonparametric effects with hyperparameters a = 1 and b = 0.005 for
nonparametric and spatial effects.
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Figure 1.18: Results for the nonparametric effects with hyperparameters a = 1 and b = 0.00005 for
nonparametric and spatial effects.



Tutorial 2

Determinants of childhood
undernutrition in Zambia: A tutorial on
Bayesian semiparametric regression using
GLMM methodology

2.1 Introduction

This tutorial demonstrates the usage of BayesX for analysing Bayesian semiparametric regression
models based on mixed model methodology. As an example, we consider data on childhood under-
nutrition in Zambia. This data has already been analysed in Kandala et al. (2001) and we will use
the same model that has been developed there. Since our focus is on demonstrating how regression
models can be estimated in BayesX, we do not discuss or interpret the estimation results but simply
give the commands to obtain them.

The main focus in this tutorial is on empirical Bayes inference based on mixed model methodology.
BayesX also supports two further inferential concepts: full Bayesian inference based on MCMC and
a method for simultaneously selecting variables and smoothing parameters, which are described in
two additional tutorials. All tutorials are designed to be self-contained and describe all features of
BayesX in detail, that will be needed throughout the tutorial. Users who are already familiar with
the usage of dataset and map objects may therefore skim through sections 2.3–2.5.

The theoretical background of Bayesian semiparametric regression will not be described in this
tutorial. The reference manual may serve as a first introduction, while further details about the
estimation techniques for the empirical Bayes approach in the context of univariate exponential
families can be found in Fahrmeir, Kneib & Lang (2004). Categorical extensions are treated in
Kneib & Fahrmeir (2006) while Kneib (2006) and Kneib & Fahrmeir (2007) deal with the analysis
of continuous time survival analysis.

2.2 Description of the data set

Undernutrition among children is usually determined by assessing an anthropometric status of the
children relative to a reference standard. In our example, undernutrition is measured by stunting
or insufficient height for age, indicating chronic undernutrition. Stunting for a child i is determined

27
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using a Z-score defined as

Zi =
AIi −MAI

σ

where AI refers to the child‘s anthropometric indicator (height at a certain age in our example),
while MAI and σ correspond to the median and the standard deviation in the reference population,
respectively.

Our main interest is on modelling the dependence of undernutrition on covariates including the
age of the child, the body mass index of the child‘s mother, the district the child lives in and some
further categorial covariates. Table 2.1 gives a description of the variables that we will use in our
model.

Variable Description

hazstd standardised Z-score for stunting
bmi body mass index of the mother
agc age of the child in months
district district where the mother lives
rcw mother‘s employment status with categories “working” (= 1) and “not

working” (= −1)
edu1/2 mother‘s educational status with categories “complete primary but incom-

plete secondary” (edu1 = 1), “complete secondary or higher” (edu2 = 1)
and “no education or incomplete primary” (edu1 = edu2 = −1)

tpr locality of the domicile with categories “urban” (= 1) and “rural” (= −1)
sex gender of the child with categories “male” (= 1) and “female” (= −1)

Table 2.1: Variables in the undernutrition data set.

2.3 Getting started

After having started the graphical user interface version of BayesX, a main window with four sub-
windows appears on the screen. These are the command window for entering and executing code,
the output window for displaying results, the review window for easy access to past commands, and
the object browser that displays all objects currently available. In the command line version of
BayesX, there are, of course, no sub-windows but only command line prompt to enter commands.

BayesX is object oriented although the concept is limited, i.e. inheritance and other concepts of
object oriented languages like C++ or R are not supported. For every object type, a number of
object-specific methods can be applied to a particular object instance. The syntax for generating
a new object in BayesX is

> objecttype objectname

where objecttype defines the type of the object to be created, e.g. dataset, and objectname is the
name to be assigned to the new object.

The rest of the tutorial is separated in five parts dealing with the different steps of estimating a
regression model based on mixed model methodology. In section 2.4, we create a dataset object to
store, handle and manipulate the data. We will also give a brief description of some methods that
may be applied to dataset objects. Since we want to estimate a spatial effect of the district in which
a child lives, we need the boundaries of the districts to compute the neighbourhood information of
the map of Zambia. This information will be stored in a map object. Section 2.5 describes how to
create and handle these objects. Estimation of the regression model is carried out in section 2.6
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using a remlreg object. The last two sections describe how to visualise the estimation results and
how to customise the obtained graphics.

If you have not done so yet, please download the data set and the boundary file associated with
this tutorial now (from the BayesX homepage). You may also want to download the batch file
containing the commands used in the following sections. Please note, that paths within these
commands must be changed according to the storage location of the corresponding files on your
hard disk.

2.4 Reading data set information

In a first step, we read the available data set information into BayesX. Therefore we create a dataset
object named d:

> dataset d

We store the data in d using the method infile:

> d.infile, maxobs=5000 using c:\data\zambia.raw

Note, that we assume the data to be provided in the external file c:\data\zambia.raw. The first
few lines of this file look like this:

hazstd bmi agc district rcw edu1 edu2 tpr sex

0.0791769 21.83 4 81 -1 1 0 1 -1

-0.2541965 21.83 26 81 -1 1 0 1 -1

-0.1599823 20.43 56 81 1 -1 -1 1 1

0.1733911 22.27 6 81 -1 0 1 1 1

In our example, the file contains the variable names in the first line. Therefore, it is not necessary
to specify them in the infile command. If the file contained only the data without variable names,
we would have to supply them after the keyword infile:

> d.infile hazstd bmi agc district rcw edu1 edu2 tpr sex, maxobs=5000

using c:\data\zambia.raw

Option maxobs can be used to speed up the execution time of the infile command. If maxobs is
specified, BayesX allocates enough memory to store all the data while the total amount of required
memory is unknown in advance if maxobs remains unspecified. For larger data sets, this may cause
BayesX to start reading the data set information several times because the currently allocated
memory is exceeded. However, this is only meaningful for larger data sets with more than 10,000
observations and could therefore be omitted in our example.

A second option that may be added to the infile command is the missing option to indicate
missing values. Specifying for example missing = M defines the letter ‘M’ as an indicator for a
missing value. The default for missing values are a period ‘.’ and ‘NA’ (which remain valid indicators
for missing values even if an additional indicator is defined by the missing option).

After having read the dataset information, we can inspect the data visually. Executing the com-
mand

> d.describe

opens an Object-Viewer window containing the data in form of a spreadsheet (see Figure 2.1). The
same can also be achieved by double-clicking on the dataset object in the object browser.

Further methods allow to examine the variables in the dataset object. For a categorial variable such
as sex , the tabulate command may be used to produce a frequency table:
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Figure 2.1: A screenshot of the dataset.

> d.tabulate sex

resulting in

Variable: sex

Value Obs Freq Cum

-1 2451 0.5057 0.5057

1 2396 0.4943 1

being printed in the output window. For continuous variables, the descriptive command prints
several characteristics of the variable in the output window. E.g., executing

> d.descriptive bmi

leads to

Variable Obs Mean Median Std Min Max

bmi 4847 21.944349 21.4 3.2879659 12.8 39.29

2.5 Map objects

In the following, we will estimate a spatially correlated effect of the district in which a child
lives. Therefore we need the boundaries of the districts in Zambia to compute the neighbourhood
information of the map of Zambia. We therefore create a map object

> map m

and read the boundaries using the infile command of map objects:

> m.infile using c:\data\zambia.bnd

Having read the boundary information, BayesX automatically computes the neighbourhood matrix
of the map.

The file following the keyword using is assumed to contain the boundaries in form of closed
polygons. To give an example we print a small part of the boundary file of Zambia. The map
corresponding to the section of the boundary file can be found in Figure 2.2.
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...

”52”,48
28.080507,-12.537530
28.083376,-12.546980
28.109501,-12.548961
28.134972,-12.566787
28.154797,-12.585320
28.165771,-12.593912
28.165771,-12.593912
28.160769,-12.609917
28.152800,-12.633824
28.144831,-12.657733
28.132877,-12.677656
28.120922,-12.701565
28.120922,-12.717505
28.120922,-12.741411
28.116938,-12.761335
28.108969,-12.777274
28.100998,-12.793213
28.089045,-12.817122
28.085060,-12.837045
28.081076,-12.856968
28.081076,-12.876892
28.080862,-12.884153
28.080862,-12.884153
28.076630,-12.879521
28.031454,-12.881046
27.974281,-12.884675
27.910725,-12.878692
27.686228,-12.880120
27.665676,-12.854732
27.653563,-12.818301
27.639263,-12.759848
27.648254,-12.699927
27.662464,-12.680613
27.662464,-12.680613
27.666534,-12.675080
27.703260,-12.679779
27.752020,-12.695455
27.797932,-12.702188
27.836775,-12.707567
27.867813,-12.699892
27.902308,-12.667418
27.922668,-12.630853
27.943035,-12.596350
27.963434,-12.571486
27.983179,-12.563844
28.016331,-12.554779
28.070650,-12.542199
28.080507,-12.537530

...

For each region of the map, the boundary file must contain the identifying name of the region, the
polygons that form the boundary of the region, and the number of lines the polygon consists of.
The first line always contains the region code surrounded by quotation marks and the number of
lines the polygon of the region consists of. The code and the number of lines must be separated
by a comma. The subsequent lines contain the coordinates of the straight lines that form the
boundary of the region. The straight lines are represented by the coordinates of their end points.
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Coordinates must be separated by a comma. Note that the first and the last point must be identical
(see the example above) to obtain a closed polygon. Compare chapter 5 of the reference manual
for a detailed description of some special cases, e.g. regions divided into subregions.

Figure 2.2: Corresponding graph of the section of the boundary file

Map objects may be visualised using method describe:

> m.describe

resulting in the graph shown in Figure 2.3. Additionally, describe prints further information about
the map object in the output window including the name of the object, the number of regions, the
minimum and maximum number of neighbours and the bandwidth of the corresponding adjacency
or neighbourhood matrix:

MAP m

Number of regions: 54

Minimum number of neighbors: 1

Maximum number of neighbors: 9

Bandsize of corresponding adjacency matrix: 24

Figure 2.3: The districts within Zambia.

Reading the boundary information from an external file and computing the neighbourhood matrix
may be a computationally intensive task if the map contains a large number of regions or if the
polygons are given in great detail. To avoid doing these computation in every BayesX session, we
store the neighbourhood information in a graph file using method outfile together with the graph
option:

> m.outfile, replace graph using c:\data\zambiasort.gra
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A graph file stores the nodes and the edges of a graph G = (N,E), see for example George & Liu
(1981) for a first introduction into graph theory. A graph is a convenient way of representing the
neighbourhood structure of a geographical map. The nodes of the graph correspond to the region
codes. The neighbourhood structure is represented by the edges of the graph. In some situations
it may be useful to define weights associated with the edges of a graph which can be be stored in
the graph file as well.

We now describe the structure of a graph file as it is expected by BayesX. The first line of a graph
file must contain the total number of nodes of the graph. In the remaining lines, the nodes of
the graph together with their edges and associated weights are specified. One node corresponds
to three consecutive lines. The first of the three lines must contain the name of the node, which
typically will be the name of the geographical region. In the second line, the number of edges of
that particular node is given. The third line contains the corresponding edges of the node, where
an edge is given by the index of a neighbouring node. The index starts with zero. For example, if
the fourth and the seventh node/region in the graph file are connected/neighbours, the edge index
for the fourth node/region is 6 and for the seventh node/region 3.

We illustrate the structure of a graph file with an example. The following few lines are the beginning
of the graph file corresponding to the reordered map of Zambia:

57
87
1
5
76
3
9 8 7
67
2
10 9

...

The first line specifies the total number of nodes, in the present example 57 nodes. The subsequent
three lines correspond to the node with name ‘87’, which is the first region in the reordered map
of Zambia. Region ‘87’ has 1 neighbour, namely the sixth node appearing in the graph file. Once
again, note that the index starts with zero, i.e. 0 corresponds to the first node, 1 corresponds to
the second node and so on. Lines 5 to 7 in the example correspond to node ‘76’ and its three
neighbours and lines 8 to 10 correspond to node ‘67’.

In a graph file it is also possible to specify weights associated with the edges of the nodes. Since in
the preceding example no weights are explicitly specified, all weights are automatically defined to
be equal to one. Nonequal weights are specified in the graph file by simply adding them following
the edges of a particular node. An example of the beginning of a graph file with weights is given
below:

57
87
1
5 1.44172
76
3
7 8 9 0.707424 1.3816 0.682372
67
2
9 10 1.67424 0.8406
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...

Here the edge of the first node ‘87’ has weight 1.44172, the edges of the second node have weights
0.707424, 1.3816 and 0.682372.

Note, that graph files allow the estimation of very general correlated effects based on Markov
random fields. While the polygons stored in a boundary file represent geographical information,
the nodes and edges of a graph may define arbitrary neighbourhood structures. For example,
the definition of three-dimensional Markov random fields representing space-time interactions is
possible.

To see how storing maps in graph files affects the computation time of the infile command, we
create a second map object and read in the information from the graph file. Again, we have to
specify the keyword graph:

> map m1

> m1.infile, graph using c:\data\zambiasort.gra

As you should have noticed, reading geographical information from a graph file is usually much
faster than reading from a boundary file. However, using graph files also has a drawback. Since
they do no longer contain the full information on the polygons forming the map, we can not visualise
a map object created from a graph file. Trying to do so

> m1.describe

raises an error message. This implies, that visualising estimation results of spatial effects can only
be based on map objects created from boundary files, although estimation can be carried out using
graph files. Since we will work with the map object m in the following, we delete m1:

> drop m1

2.6 Bayesian semiparametric regression

To estimate a regression model based on mixed model techniques, we first create a remlreg object:

> remlreg r

By default, estimation results are written to the subdirectory output of the installation directory.
In this case, the default filenames are composed of the name of the remlreg object and the type of
the specific file. Usually it is more convenient to store the results in a user-specified directory. To
define this directory we use the outfile command of remlreg objects:

> r.outfile = c:\data\r

Note, that outfile does not only specify a directory but also a base filename (the character ‘r’
in our example). Therefore executing the command above leads to storage of the results in the
directory c:\data and all file names will start with the character ‘r’. Of course the base filename
may be different from the name of the remlreg object.

In addition to parameter estimates, BayesX also produces some further information on the estima-
tion process. In contrast to parameter estimates, this information is not stored automatically but
is printed in the output window. Therefore it is useful to store the contents of the output window.
This can be achieved automatically by opening a log file using the logopen command

> logopen, replace using c:\data\logreml.txt

After opening a log file, every information written to the output window is also stored in this file.
Option replace allows BayesX to overwrite an existing file with the same name as the specified
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log file. Without replace, results are appended to an existing file.

The model presented in Kandala et al. (2001) is given by the following semiparametric predictor:

η = γ0+γ1rcwγ2edu1 +γ3edu2 +γ4tpr+γ5sex+f1(bmi)+f2(agc)+f str(district)+funstr(district).

The two continuous covariates bmi and agc are assumed to have a possibly nonlinear effect on the
Z-score and are therefore modelled nonparametrically (as P-splines with second order random walk
prior in our example). The spatial effect of the district is split up into a spatially correlated part
f str(district) and an uncorrelated part funstr(district), see Fahrmeir & Lang (2001b) for a motiva-
tion. The correlated part is modelled by a Markov random field prior, where the neighbourhood
matrix and possible weights associated with the neighbours are obtained from the map object m.
The uncorrelated part is modelled by an i.i.d. Gaussian effect.

To estimate the model we use method regress of remlreg objects:

> r.regress hazstd = rcw + edu1 + edu2 + tpr + sex + bmi(psplinerw2)

+ agc(psplinerw2) + district(spatial,map=m) + district(random),

family=gaussian lowerlim=0.01 eps=0.0005 using d

Options lowerlim and eps control the estimation process. Since small variances are near to the
boundary of their parameter space, the usual Fisher-scoring algorithm for their determination has
to be modified. If the fraction of the penalised part of an effect relative to the total effect is less than
lowerlim, the estimation of the corresponding variance is stopped and the estimator is defined to
be the current value of the variance (see the reference manual for details). The option eps defines
the termination criterion for the estimation process. The default value for lowerlim is 0.001, the
default value for eps is 0.00001. However, since our analysis is only for explanatory purpose, we
chose somewhat weaker conditions resulting in a faster “convergence” of the algorithm.

A further option of method regress is maxit, defining the maximum number of iterations that
should be performed in the estimation. Note, that BayesX produces results based on the current
values of all parameters even if no convergence could be achieved within maxit iterations, but a
warning message will be printed in the output window.

In the following we reproduce the content of the output window to make the user familiar with
the estimation results produced by BayesX. Note that the output may look somewhat different
depending on the version of BayesX you are considering.

ESTIMATION RESULTS:

Estimated scale parameter: 0.802145

Scale parameter is also stored in file

c:\data\r_scale.res

f_bmi_pspline

Estimated variance: 1.14819e-05

Inverse variance: 87093.8

Smoothing parameter: 69861.9

(Smoothing parameter = scale / variance)

Degrees of freedom: 1.17481

NOTE: Estimation of the variance was stopped after iteration 6

because the corresponding penalized part was small relative to the linear predictor.
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Variance and smoothing parameter are stored in file

c:\data\r_f_bmi_pspline_var.res

Results are stored in file

c:\data\r_f_bmi_pspline.res

Postscript file is stored in file

c:\data\r_f_bmi_pspline.ps

Results may be visualized using method ’plotnonp’

Type for example: objectname.plotnonp 1

f_agc_pspline

Estimated variance: 0.00322146

Inverse variance: 310.418

Smoothing parameter: 249.001

(Smoothing parameter = scale / variance)

Degrees of freedom: 6.19468

Variance and smoothing parameter are stored in file

c:\data\r_f_agc_pspline_var.res

Results are stored in file

c:\data\r_f_agc_pspline.res

Postscript file is stored in file

c:\data\r_f_agc_pspline.ps

Results may be visualized using method ’plotnonp’

Type for example: objectname.plotnonp 2

f_district_spatial

Estimated variance: 0.0294011

Inverse variance: 34.0123

Smoothing parameter: 27.2828

(Smoothing parameter = scale / variance)

Degrees of freedom: 16.7629

Variance and smoothing parameter are stored in file

c:\data\r_f_district_spatial_var.res

Results are stored in file

c:\data\r_f_district_spatial.res

Postscript file is stored in file

c:\data\r_f_district_spatial.ps

Results may be visualized in BayesX using method ’drawmap’

Type for example: objectname.drawmap 3

f_district_random

Estimated variance: 0.00806667

Inverse variance: 123.967
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Smoothing parameter: 99.4393

(Smoothing parameter = scale / variance)

Degrees of freedom: 14.2076

Variance and smoothing parameter are stored in file

c:\data\r_f_district_random_var.res

Results for random effects are stored in file

c:\data\r_f_district_random.res

FixedEffects

Variable Post. Mode Std. Dev. p-value 95% Confidence Interval

const 0.0610359 0.0341574 0.0734909 -0.00592615 0.127998

rcw 0.00767163 0.0136563 0.573859 -0.0191002 0.0344435

edu1 -0.0605106 0.0261369 0.020636 -0.111749 -0.00927198

edu2 0.234918 0.0459925 8.82492e-06 0.144754 0.325081

tpr 0.0904094 0.0218891 0.000123529 0.047498 0.133321

sex -0.0585716 0.0129304 4.08485e-05 -0.0839203 -0.0332229

Results for fixed effects are also stored in file

c:\data\r_FixedEffects.res

Model Fit

-2*log-likelihood: 3733.37

Degrees of freedom: 44.34

(conditional) AIC: 3822.05

(conditional) BIC: 4109.65

GCV: 0.809435

Results on the model fit are stored in file

c:\data\r_modelfit.raw

Additive predictor and expectations

Additive predictor and expectation for each observation are stored in file

c:\data\r_predict.raw

Files of model summary:

---------------------------------------------------------------------------

Batch file for visualizing effects of nonlinear functions is stored in file

c:\data\r_graphics.prg

NOTE: ’input filename’ must be substituted by the filename of the boundary-file

---------------------------------------------------------------------------

Batch file for visualizing effects of nonlinear functions

in R / S-Plus is stored in file

c:\data\r_r_splus.txt

NOTE: ’input filename’ must be substituted by the filename of the boundary-file

---------------------------------------------------------------------------
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Latex file of model summaries is stored in file

c:\data\r_model_summary.tex

---------------------------------------------------------------------------

In addition to the information being printed to the output window, results for each effect are
written to external ASCII files. The names of these files are given in the output window, compare
the previous pages. For the variance parameters, the files contain the variance as well as the
corresponding smoothing parameter and degrees of freedom. For the different terms of the model,
the files contain the posterior mode, the 80% and 95% credible interval, the standard deviations
and the corresponding 95% and 80% posterior probabilities of the estimated effects (unless other
levels have been requested). For example, the beginning of the file c:\data\r_f_bmi_pspline.res
for the effect of bmi may look like this:

intnr bmi pmode ci95lower ci80lower std ci80upper ci95upper pcat95 pcat80

1 12.8 -0.22305 -0.304661 -0.276409 0.0416301 -0.169692 -0.141439 -1 -1

2 13.15 -0.215246 -0.292828 -0.26597 0.0395749 -0.164522 -0.137663 -1 -1

3 14.01 -0.19607 -0.264173 -0.240597 0.0347394 -0.151544 -0.127968 -1 -1

The credible intervals and posterior probabilities that are computed for every effect may be changed
by the user via the options level1 and level2. For example, specifying level1=99 and level2=70

in the option list of the regress command leads to the computation of 70% and 99% credible
intervals and posterior probabilities. The defaults are level1=95 and level2=80.

Some nonparametric effects are visualised by BayesX automatically and the resulting graphs
are stored in ps format. For example, the effect of bmi is visualised in the file
c:\data\b_f_bmi_pspline.ps (compare the results on the previous pages for the other filenames).
A batch file to reproduce the plots is stored in the output directory. In our example the name of
the file is c:\data\r_graphics.prg. The advantage is that additional options may be added by
the user to customise the graphs (compare the following two sections).

Moreover, a file with ending .tex is created in the outfile directory. This file contains a summary
of the estimation results and may be compiled using LATEX.

Having finished the estimation, we may close the log file by typing

> logclose

Note, that the log file is closed automatically when you exit BayesX.

2.7 Visualising estimation results

BayesX provides three possibilities to visualise estimation results:

• As mentioned in the previous section, certain results are automatically visualised by BayesX
and stored in ps files.

• Post estimation commands of remlreg objects allow to visualise results after having executed
a regress command.

• Graph objects may be used to produce graphics using the ASCII files containing the estima-
tion results. In principle, graph objects allow the visualisation of any content of a dataset
object. Graph files are also used in the batch file containing the commands to reproduce the
automatically generated graphics.
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In this section, we describe the general usage of the post estimation commands as well as the
commands for the usage with graph objects to enable the user to reproduce the automatically
generated plots directly in BayesX. Section 2.8 describes how to customise plots.

2.7.1 Post estimation commands

After having estimated a regression model, plots for nonparametric effects of metrical covariates
can be produced using the post estimation command plotnonp:

> r.plotnonp 1

and

> r.plotnonp 2

produce the graphs shown in Figure 2.4 in an object-viewer window. The numbers following the
plotnonp command depend on the order in which the model terms have been specified (and an
internal ordering of the effect types). The numbers are supplied in the output window after estima-
tion, compare the results in the previous section.

By default, the plots contain the posterior mode and pointwise credible intervals according to the
levels specified in the regress command. Hence, by default the plots include pointwise 80% and
95% credible intervals.
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Figure 2.4: Effect of the body mass index of the child‘s mother and of the age of the child together
with pointwise 80% and 95% credible intervals.

A plot may be stored in ps format using the outfile option. Executing

> r.plotnonp 1, replace outfile = c:\data\f_bmi.ps

stores the plot for the estimated effect of bmi in the file c:\data\f_bmi.ps. Again, specifying
replace allows BayesX to overwrite an existing file. Note, that BayesX does not display the graph
on the screen if the option outfile is specified.

Estimation results for spatial effects are best visualised by drawing the respective map and colouring
the regions of the map according to some characteristic of the posterior, e.g. the posterior mode.
For the structured spatial effect this can be achieved using the post estimation command drawmap

> r.drawmap 3

which results in the graph shown in Figure 2.5.

2.7.2 Graph Objects

The commands presented in the previous subsection work only after having estimated a regression
model in the current BayesX session. However, it may of course also be useful to visualise results
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-0.313644 0 0.243711

Figure 2.5: Posterior mode of the structured spatial effect.

of former analyses. This can be achieved using graph objects. Note again, that graph files are also
used in the batch file containing the commands to reproduce the automatically generated graphics.
Therefore the purpose of this subsection is also to enable the user to understand the content of this
batch file.

In a first step, we read the estimation results into a dataset object. For example the estimation
results for the effect of bmi can be read into BayesX by executing the commands

> dataset res

> res.infile using c:\data\r_f_bmi_pspline.res

Now the estimation results (or any content of a dataset object) may be visualised using a graph
object which we create by typing

> graph g

The results stored in the dataset object res are now visualised using the plot command of graph
objects. Executing

> g.plot bmi pmode ci95lower ci80lower ci80upper ci95upper using res

reproduces the graph in Figure 2.4.

Similar as for plotnonp, the direct usage of the drawmap command is only possible after executing
a regress command. However, using graph objects again allows us to visualise results that have
been stored in a file.

First we read the information contained in this file into a dataset object. For example, the following
command

> res.infile using c:\data\r_f_district_spatial.res

stores the estimation results for the structured spatial effect in the dataset object res. Now we
can visualise the posterior mode using method drawmap of graph objects leading again to the graph
shown in Figure 2.5:

> g.drawmap pmode district, map=m using res

Since – in contrast to a remlreg object – no map object is associated with a graph object we explicitly
have to specify the map that we want to use in the option list.

Using graph objects also allows us to plot other characteristics of the posterior than the posterior
mode. For instance the posterior 95% probabilities may be visualised by
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> g.drawmap pcat95 district, map=m using res

The result is shown in Figure 2.6.

-1.0 0 1.0

Figure 2.6: Posterior 95% probability of the structured spatial effect.

A further advantage of graph objects is that they allow to visualise the estimation results for the
uncorrelated spatial effects. Since these are modelled as unstructured random effects, BayesX is
unable to recognise them as spatial effects. However, proceeding as follows gives us the possibility
to plot the unstructured spatial effect shown in Figure 2.7:

> res.infile using c:\data\r_f_district_random.res

> g.drawmap pmode district, map=m color swapcolors using res

-0.109228 0 0.115689

Figure 2.7: Posterior mode of the unstructured spatial effect.

2.8 Customising graphics

This section describes how to customise graphics created in BayesX. All options are described for
the usage with the post estimation commands but may be used with graph files as well. Hence,
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the options presented in this section also enable the user to modify the batch file containing the
commands to reproduce the automatically generated graphics.

For the presentation of nonparametric effects it may be desirable to include only one of the credible
intervals into the plot. This is achieved by specifying the levels option. Possible values of this
option are 1 and 2, corresponding to the levels specified in the regress command (compare section
2.6). If the default values of level1 and level2 have been used, specifying level=2 in the plotnonp
command causes BayesX to plot the 80% credible interval only (Figure 2.8):

> r.plotnonp 1, levels=2
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Figure 2.8: Effect of the body mass index of the child‘s mother with pointwise 80% credible intervals
only.

It may be useful to add some more information to the graphs of nonparametric effects to distinguish
more obviously between different covariates. Ways to do so are the specification of a title or the
specification of axis labels. Both possibilities are supported by BayesX as demonstrated in the
following examples (compare Figure 2.9 for the resulting plots):

> r.plotnonp 1, title="Mother body mass index"

> r.plotnonp 1, xlab="bmi" ylab="f_bmi" title="Mother body mass index"
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Figure 2.9: Specification of title and axis labels.

By default, BayesX displays x- and y-axis with five equidistant ticks according to the range of the
data that is to be visualised. These defaults may be overwritten using the options xlimbottom,
xlimtop and xstep for the x-axis and ylimbottom, ylimtop and ystep for the y-axis, respectively.
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The usage of these options is more or less self-explanatory and is demonstrated in the following
commands which lead to the graph shown in Figure 2.10.

> r.plotnonp 1, xlab="bmi" ylab="f_bmi" title="Mother body mass index"

ylimbottom=-0.8 ylimtop=0.6 ystep=0.2 xlimbottom=12 xlimtop=40

Figure 2.10 also includes a graph for the effect of the age of the child that is customised in the
same way as for the effect of bmi .

> r.plotnonp 2, xlab="age" ylab="f_age" title="Age of the child in months"

ylimbottom=-0.3 ystep=0.3 xlimbottom=0 xlimtop=60 xstep=10
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Figure 2.10: Re-defining x- and y-axis.

Now we turn to the options for method drawmap. By default, drawmap uses grey scales to represent
different values of the posterior mode. Using the option color forces BayesX to use different colours
instead. Here the default would be to represent higher values through green colours and smaller
values through red colours. Specifying swapcolors switches this definition. Therefore the following
command

> r.drawmap 3, color swapcolors

leads to the graph shown in Figure 2.11 with higher values being represented through red colours
and smaller values through green colours. An alternative color scheme can be requested by adding
option hcl.

Similar options as for the visualisation of nonparametric effects exist for method drawmap. For
example, a title may be included by specifying the option title

> r.drawmap 3, color swapcolors title="Structured spatial effect"

or the range of values to be displayed may be defined using the options lowerlimit and upperlimit:

> r.drawmap 3, color swapcolors title="Structured spatial effect" lowerlimit=-0.3

upperlimit=0.3

The graph produced by the second command is shown in Figure 2.12.
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Figure 2.11: Posterior mode of the structured spatial effect in colour.
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Figure 2.12: Specifying a title and the range of the plot for spatial effects.



Tutorial 3

Determinants of childhood
undernutrition in Zambia: A tutorial on
penalized least squares estimation
including built in model and variable
selection in semiparametric regression
models

3.1 Introduction

This tutorial demonstrates the usage of BayesX for simultaneously selecting variables and smooth-
ing parameters in semiparametric regression models using stepwisereg objects. As an example, we
consider data on childhood undernutrition in Zambia. This data has already been analysed in Kan-
dala et al. (2001) and we will use the same data set that has been used there. Since our focus is on
demonstrating how regression models can be estimated in BayesX, we do not discuss or interpret
the estimation results but simply give the commands to obtain them.

The main focus in this tutorial is on a method for simultaneously selecting variables and smoothing
parameters. BayesX also supports two further inferential concepts: full Bayesian inference based
on MCMC and empirical Bayes inference based on mixed model methodology, which are described
in two additional tutorials. All tutorials are designed to be self-contained and describe all features
of BayesX in detail, that will be needed throughout the tutorial. Users who are already familiar
with the usage of dataset and map objects may therefore skim through sections 3.3–3.5.

The theoretical background of Bayesian semiparametric regression will not be described in this
tutorial. The reference manual may serve as a first introduction, while further details about the
estimation techniques employed in this tutorial can be found in Belitz & Lang (2008).

3.2 Description of the data set

Undernutrition among children is usually determined by assessing an anthropometric status of the
children relative to a reference standard. In our example, undernutrition is measured by stunting
or insufficient height for age, indicating chronic undernutrition. Stunting for a child i is determined

45
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using a Z-score defined as

Zi =
AIi −MAI

σ

where AI refers to the child‘s anthropometric indicator (height at a certain age in our example),
while MAI and σ correspond to the median and the standard deviation in the reference population,
respectively.

Our main interest is in modelling the dependence of undernutrition on covariates including the age
of the child, the body mass index of the child‘s mother, the district the child lives in and some
further categorial covariates. Table 3.1 gives a description of the variables that will be used in our
analysis.

Variable Description

hazstd standardised Z-score for stunting
bmi body mass index of the mother
agc age of the child in months
district district where the mother lives
rcw mother‘s employment status with categories “working” (= 1) and “not

working” (= −1)
edu1/2 mother‘s educational status with categories “complete primary but incom-

plete secondary” (edu1 = 1), “complete secondary or higher” (edu2 = 1)
and “no education or incomplete primary” (edu1 = edu2 = −1)

tpr locality of the domicile with categories “urban” (= 1) and “rural” (= −1)
sex gender of the child with categories “male” (= 1) and “female” (= −1)
edu mother‘s educational status with categories “no education or incomplete

primary” (edu = 0), “complete primary but incomplete secondary” (edu =
1) and “complete secondary or higher” (edu = 2)

Table 3.1: Variables in the undernutrition data set.

3.3 Getting started

After having started the graphical user interface version of BayesX, a main window with four sub-
windows appears on the screen. These are the command window for entering and executing code,
the output window for displaying results, the review window for easy access to past commands,
and the object browser that displays all objects currently available. In the command line version
of BayesX, there are, of course, no sub-windows but only the command line prompt to enter
commands.

BayesX is object oriented although the concept is limited, i.e. inheritance and other concepts of
object oriented languages like C++ or R are not supported. For every object type, a number of
object-specific methods can be applied to a particular object instance. The syntax for generating
a new object in BayesX is

> objecttype objectname

where objecttype defines the type of the object to be created, e.g. dataset, and objectname is the
name to be assigned to the new object.

The rest of the tutorial is separated in seven parts dealing with the different steps of estimating
a regression model. In section 3.4, we create a dataset object to store, handle and manipulate
the data. We will also give a brief description of some methods that may be applied to dataset
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objects. Since we want to estimate a spatial effect of the district in which a child lives, we need the
boundaries of the districts to compute the neighborhood information of the map of Zambia. This
information will be stored in a map object. 3.5 describes how to create and handle these objects.
Model selection and estimation of the regression model is carried out in 3.6 using a stepwisereg
object. Section 3.7 extends the usage of stepwisereg objects to calculating credible bands. The next
two sections describe how to visualize the estimation results and how to customize the obtained
graphics.

If you have not done so yet, please download the data set and the boundary file associated with
this tutorial now (from the BayesX homepage). You may also want to download the batch file
containing the commands used in the following sections. Please note, that paths within these
commands must be changed according to the storage location of the corresponding files on your
hard disk.

3.4 Reading data set information

In a first step, we read the available data set information into BayesX. Therefore we create a dataset
object named d:

> dataset d

We store the data in d using the method infile:

> d.infile, maxobs=5000 using c:\data\zambia.raw

Note, that we assume the data to be provided in the external file c:\data\zambia.raw. The first
few lines of this file look like this:

hazstd bmi agc district rcw edu1 edu2 tpr sex

0.0791769 21.83 4 81 -1 1 0 1 -1

-0.2541965 21.83 26 81 -1 1 0 1 -1

-0.1599823 20.43 56 81 1 -1 -1 1 1

0.1733911 22.27 6 81 -1 0 1 1 1

In our example, the file contains the variable names in the first line. It is therefore not necessary
to specify the variable names explicitly in the infile command. If the file contained only the data
without variable names, we would have to supply them after the keyword infile:

> d.infile hazstd bmi agc district rcw edu1 edu2 tpr sex, maxobs=5000

using c:\data\zambia.raw

Option maxobs can be used to speed up the execution time of the infile command. If maxobs is
specified, BayesX allocates enough memory to store all the data while the total amount of required
memory is unknown in advance if maxobs remains unspecified. For larger data sets, this may cause
BayesX to start reading the data set information several times because the currently allocated
memory is exceeded. However, this is only meaningful for larger data sets with more than 10,000
observations and could therefore be omitted in our example.

A second option that may be added to the infile command is the missing option to indicate
missing values. Specifying for example missing = M defines the letter ‘M’ as an indicator for a
missing value. The default for missing values are a period ‘.’ and ‘NA’ (which remain valid indicators
for missing values even if an additional indicator is defined by the missing option).

After having read the dataset information, we can inspect the data visually. Executing the com-
mand

> d.describe

opens an Object-Viewer window containing the data in form of a spreadsheet (see Figure 3.1). The
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Figure 3.1: A screenshot of the dataset.

same can also be achieved by double-clicking on the dataset object in the object browser.

Further methods allow to examine the variables in the dataset object. For a categorial variable such
as sex , the tabulate command may be used to produce a frequency table:

> d.tabulate sex

resulting in

Variable: sex

Value Obs Freq Cum

-1 2451 0.5057 0.5057

1 2396 0.4943 1

being printed in the output window. For continuous variables, the descriptive command prints
several characteristics of the variable in the output window. E.g., executing

> d.descriptive bmi

leads to

Variable Obs Mean Median Std Min Max

bmi 4847 21.944349 21.4 3.2879659 12.8 39.29

3.5 Map objects

In the following, we will estimate a spatially correlated effect of the district in which a child
lives. Therefore we need the boundaries of the districts in Zambia to compute the neighbourhood
information of the map of Zambia. We therefore create a map object
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> map m

and read the boundaries using the infile command of map objects:

> m.infile using c:\data\zambia.bnd

Having read the boundary information, BayesX automatically computes the neighbourhood matrix
of the map.

The file following the keyword using is assumed to contain the boundaries in form of closed
polygons. To give an example we print a small part of the boundary file of Zambia. The map
corresponding to the section of the boundary file can be found in Figure 3.2.

...

”52”,48
28.080507,-12.537530
28.083376,-12.546980
28.109501,-12.548961
28.134972,-12.566787
28.154797,-12.585320
28.165771,-12.593912
28.165771,-12.593912
28.160769,-12.609917
28.152800,-12.633824
28.144831,-12.657733
28.132877,-12.677656
28.120922,-12.701565
28.120922,-12.717505
28.120922,-12.741411
28.116938,-12.761335
28.108969,-12.777274
28.100998,-12.793213
28.089045,-12.817122
28.085060,-12.837045
28.081076,-12.856968
28.081076,-12.876892
28.080862,-12.884153
28.080862,-12.884153
28.076630,-12.879521
28.031454,-12.881046
27.974281,-12.884675
27.910725,-12.878692
27.686228,-12.880120
27.665676,-12.854732
27.653563,-12.818301
27.639263,-12.759848
27.648254,-12.699927
27.662464,-12.680613
27.662464,-12.680613
27.666534,-12.675080
27.703260,-12.679779
27.752020,-12.695455
27.797932,-12.702188
27.836775,-12.707567
27.867813,-12.699892
27.902308,-12.667418
27.922668,-12.630853
27.943035,-12.596350
27.963434,-12.571486
27.983179,-12.563844
28.016331,-12.554779
28.070650,-12.542199
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28.080507,-12.537530

...

For each region of the map, the boundary file must contain the identifying name of the region, the
polygons that form the boundary of the region, and the number of lines the polygon consists of.
The first line always contains the region code surrounded by quotation marks and the number of
lines the polygon of the region consists of. The code and the number of lines must be separated
by a comma. The subsequent lines contain the coordinates of the straight lines that form the
boundary of the region. The straight lines are represented by the coordinates of their end points.
Coordinates must be separated by a comma. Note that the first and the last point must be identical
(see the example above) to obtain a closed polygon. Compare chapter 5 of the reference manual
for a detailed description of some special cases, e.g. regions divided into subregions.

Figure 3.2: Corresponding graph of the section of the boundary file

Map objects may be visualised using method describe:

> m.describe

resulting in the graph shown in Figure 3.3. Additionally, describe prints further information about
the map object in the output window including the name of the object, the number of regions, the
minimum and maximum number of neighbours and the bandwidth of the corresponding adjacency
or neighbourhood matrix:

MAP m

Number of regions: 54

Minimum number of neighbors: 1

Maximum number of neighbors: 9

Bandsize of corresponding adjacency matrix: 24

The numerical complexity associated with the estimation of structured spatial effects depends
essentially on the structure of the neighbourhood matrix. Often the geographical information
stored in a boundary file does not represent the “ideal” ordering of the districts or regions (with
respect to the estimation problem). Therefore it may be useful to reorder the map using method
reorder:

> m.reorder

Usually, reordering results in a smaller bandwidth although the bandwidth is not the criterion that
is minimised by reorder. Instead the envelope of the neighbourhood matrix is minimised (compare
George & Liu (1981)).

In order to avoid reordering the map object every time you start BayesX, it is useful to store the
reordered version in a separate file. This can be achieved using the outfile command of map
objects:
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Figure 3.3: The districts within Zambia.

> m.outfile, replace using c:\data\zambiasort.bnd

The reordered map is now stored in the given file. Note, that specifying the option replace allows
BayesX to overwrite an existing file with the same name. Without this option, an error message
would be raised if the given file is already existing.

Reading the boundary information from an external file and computing the neighbourhood matrix
may be a computationally intensive task if the map contains a large number of regions or if the
polygons are given in great detail. To avoid doing these computation in every BayesX session, we
store the neighbourhood information in a graph file using method outfile together with the graph
option:

> m.outfile, replace graph using c:\data\zambiasort.gra

A graph file stores the nodes and the edges of a graph G = (N,E), see for example George & Liu
(1981) for a first introduction into graph theory. A graph is a convenient way of representing the
neighbourhood structure of a geographical map. The nodes of the graph correspond to the region
codes. The neighbourhood structure is represented by the edges of the graph. In some situations
it may be useful to define weights associated with the edges of a graph which can be be stored in
the graph file as well.

We now describe the structure of a graph file as it is expected by BayesX. The first line of a graph
file must contain the total number of nodes of the graph. In the remaining lines, the nodes of
the graph together with their edges and associated weights are specified. One node corresponds
to three consecutive lines. The first of the three lines must contain the name of the node, which
typically will be the name of the geographical region. In the second line, the number of edges of
that particular node is given. The third line contains the corresponding edges of the node, where
an edge is given by the index of a neighbouring node. The index starts with zero. For example, if
the fourth and the seventh node/region in the graph file are connected/neighbours, the edge index
for the fourth node/region is 6 and for the seventh node/region 3.

We illustrate the structure of a graph file with an example. The following few lines are the beginning
of the graph file corresponding to the reordered map of Zambia:

57
87
1
5
76
3
9 8 7
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67
2
10 9

...

The first line specifies the total number of nodes, in the present example 57 nodes. The subsequent
three lines correspond to the node with name ‘87’, which is the first region in the reordered map
of Zambia. Region ‘87’ has 1 neighbour, namely the sixth node appearing in the graph file. Once
again, note that the index starts with zero, i.e. 0 corresponds to the first node, 1 corresponds to
the second node and so on. Lines 5 to 7 in the example correspond to node ‘76’ and its three
neighbours and lines 8 to 10 correspond to node ‘67’.

In a graph file it is also possible to specify weights associated with the edges of the nodes. Since in
the preceding example no weights are explicitly specified, all weights are automatically defined to
be equal to one. Nonequal weights are specified in the graph file by simply adding them following
the edges of a particular node. An example of the beginning of a graph file with weights is given
below:

57
87
1
5 1.44172
76
3
7 8 9 0.707424 1.3816 0.682372
67
2
9 10 1.67424 0.8406

...

Here the edge of the first node ‘87’ has weight 1.44172, the edges of the second node have weights
0.707424, 1.3816 and 0.682372.

Note, that graph files allow the estimation of very general correlated effects based on Markov
random fields. While the polygons stored in a boundary file represent geographical information,
the nodes and edges of a graph may define arbitrary neighbourhood structures. For example,
the definition of three-dimensional Markov random fields representing space-time interactions is
possible.

To see how storing maps in graph files affects the computation time of the infile command, we
create a second map object and read in the information from the graph file. Again, we have to
specify the keyword graph:

> map m1

> m1.infile, graph using c:\data\zambiasort.gra

As you should have noticed, reading geographical information from a graph file is usually much
faster than reading from a boundary file. However, using graph files also has a drawback. Since
they do no longer contain the full information on the polygons forming the map, we can not visualise
a map object created from a graph file. Trying to do so

> m1.describe

raises an error message. This implies, that visualising estimation results of spatial effects can only
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be based on map objects created from boundary files, although estimation can be carried out using
graph files. Since we will work with the map object m in the following, we delete m1:

> drop m1

3.6 Simultaneous selection of variables and smoothing parameters

To perform simultaneous selection of variables and smoothing parameters in regression models, we
first create a stepwisereg object:

> stepwisereg s

By default, estimation results are written to the subdirectory output of the installation directory.
In this case, the default filenames are composed of the name of the stepwisereg object and the type
of the specific file. Usually it is more convenient to store the results in a user-specified directory.
To define this directory we use the outfile command of stepwisereg objects:

> s.outfile = c:\data\s

Note, that outfile does not only specify a directory but also a base filename (the character ‘s’
in our example). Therefore executing the command above leads to storage of the results in the
directory c:\data and all filenames start with the character ‘s’. Of course the base filename may
be different from the name of the stepwisereg object.

In addition to parameter estimates of the selected model, BayesX also gives some further infor-
mation on the selection process. Not all of this information is stored automatically but is printed
in the output window. Therefore it is useful to store the contents of the output window. This is
achieved by opening a log file using the logopen command

> logopen, replace using c:\data\logstep.txt

After opening a log file, every information written to the output window is also stored in the log file.
Option replace allows BayesX to overwrite an existing file with the same name as the specified
log file. Without replace results are appended to an existing file.

The model presented in Kandala et al. (2001) is given by the following semiparametric predictor:

η = γ0+γ1rcw+γ2edu1+γ3edu2+γ4tpr+γ5sex+f1(bmi)+f2(agc)+f str(district)+funstr(district)

The two continuous covariates bmi and agc are assumed to have a possibly nonlinear effect on the
Z-score and, therefore, are modeled nonparametrically (using P-splines with second order difference
penalty in our example). However, a linear effect could be more appropriate and, hence, the linear
effect is also considered for model selection. The spatial effect of the district is split up into a
spatially correlated part fstr(district) and an uncorrelated part funstr(district), see Fahrmeir and
Lang (2001b) for a motivation. The correlated part is modeled by a (quadratic) pairwise difference
penalty, where the neighborhood matrix and possible weights associated with the neighbors are
obtained from the map object m. The uncorrelated part is modelled by an i.i.d. Gaussian random
effect (simple ridge type penalty). For each variable and function, the selection procedure addi-
tionally considers the possibility of removing the term from the model. Both effect variables edu1
and edu2 represent the overall effect of the categorical variable edu. Therefore the variable edu is
specified as a factor for the selection procedure.

To estimate the model we use method regress of stepwisereg objects:

> s.regress hazstd = rcw + edu(factor) + tpr + sex + bmi(psplinerw2)

+ agc(psplinerw2) + district(spatial,map=m) + district(random),

family=gaussian predict using d

If option predict is specified estimates for the linear predictor and the expectation of every obser-
vation are obtained.
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In the following we reproduce the content of the output window to make the user familiar with the
estimation results produced by BayesX:

STEPWISE PROCEDURE STARTED

Startmodel:

hazstd = const

AIC_imp = 1.0027031

Startmodel:

hazstd = const + tpr + sex + edu_1 + edu_2 + bmi +

agc(psplinerw2,df=10.959,(lambda=15.4071)) +

district(spatial,df=29.5919,(lambda=7.5775)) +

district(random,df=9.84981,(lambda=83.6814))

AIC_imp = -1016.8085

Startmodel:

hazstd = const + tpr + sex + edu_1 + edu_2 + bmi +

agc(psplinerw2,df=10.959,(lambda=15.4071)) +

district(spatial,df=29.1827,(lambda=6.10614)) +

district(random,df=12.817,(lambda=50.9029))

AIC_imp = -1020.7741

Startmodel:

hazstd = const + tpr + sex + edu_1 + edu_2 + bmi +

agc(psplinerw2,df=10.959,(lambda=15.4071)) +

district(spatial,df=28.0688,(lambda=6.10614)) +

district(random,df=14.4345,(lambda=42.9308))

AIC_imp = -1022.474

Startmodel:

hazstd = const + tpr + sex + edu_1 + edu_2 + bmi +

agc(psplinerw2,df=10.959,(lambda=15.4071)) +

district(spatial,df=28.0688,(lambda=6.10614)) +

district(random,df=14.4345,(lambda=42.9308))

AIC_imp = -1023.2235

Startmodel:

hazstd = const + tpr + sex + edu_1 + edu_2 + bmi +

agc(psplinerw2,df=10.959,(lambda=15.4071)) +

district(spatial,df=25.6558,(lambda=7.5775)) +

district(random,df=15.8985,(lambda=42.9308))

AIC_imp = -1024.7078

Startmodel:

hazstd = const + tpr + sex + edu_1 + edu_2 + bmi +

agc(psplinerw2,df=10.959,(lambda=15.4071)) +

district(spatial,df=25.6558,(lambda=7.5775)) +

district(random,df=15.8985,(lambda=42.9308))

AIC_imp = -1024.7018

Startmodel:
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hazstd = const + tpr + sex + edu_1 + edu_2 + bmi +

agc(psplinerw2,df=10.959,(lambda=15.4071)) +

district(spatial,df=24.3664,(lambda=7.5775)) +

district(random,df=17.8721,(lambda=35.6851))

AIC_imp = -1024.7455

Startmodel:

hazstd = const + tpr + sex + edu_1 + edu_2 + bmi +

agc(psplinerw2,df=10.959,(lambda=15.4071)) +

district(spatial,df=24.3664,(lambda=7.5775)) +

district(random,df=17.8721,(lambda=35.6851))

AIC_imp = -1024.4848

Startmodel:

hazstd = const + tpr + sex + edu_1 + edu_2 + bmi +

agc(psplinerw2,df=10.959,(lambda=15.4071)) +

district(spatial,df=24.3664,(lambda=7.5775)) +

district(random,df=17.8721,(lambda=35.6851))

AIC_imp = -1024.4091

Final Model:

hazstd = const + tpr + sex + edu_1 + edu_2 + bmi +

agc(psplinerw2,df=10.959,(lambda=15.4071)) +

district(spatial,df=24.3664,(lambda=7.5775)) +

district(random,df=17.8721,(lambda=35.6851))

AIC_imp = -1024.3814

Used number of iterations: 10

------------------------------------------------------------------------

------------------------------------------------------------------------

Final Model:

hazstd = const + tpr + sex + edu_1 + edu_2 + bmi +

agc(psplinerw2,df=10.959,(lambda=15.4071)) +

district(spatial,df=24.3664,(lambda=7.5775)) +

district(random,df=17.8721,(lambda=35.6851))

AIC_imp = -1024.352

RESPONSE DISTRIBUTION:

Gaussian

Number of observations: 4847

ESTIMATION RESULTS:

Predicted values:

Estimated mean of predictors, expectation of response and

individual deviances are stored in file

c:\bayesx\output\s_predictmean.raw

Saturated deviance: 4847
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Estimation results for the scale parameter:

sigma2: 0.789725

FixedEffects1

Variable mean Std. Dev. 2.5% quant. median 97.5% quant.

const -0.422865 0 0 0 0

tpr 0.0945051 0 0 0 0

sex -0.0589084 0 0 0 0

edu_1 -0.063032 0 0 0 0

edu_2 0.234741 0 0 0 0

bmi 0.0209163 0 0 0 0

Results for fixed effects are also stored in file

c:\bayesx\output\s_FixedEffects1.res

f_agc

Results are stored in file

c:\bayesx\output\s_f_agc_pspline.res

Results may be visualized using the R / S-Plus function ’plotnonp’

Type for example:

plotnonp("c:\\bayesx\\output\\s_f_agc_pspline.res")

f_district

Results are stored in file

c:\bayesx\output\s_f_district_spatial.res

Results may be visualized using the R / S-Plus function

’drawmap’

f_district

Results for random effects are stored in file

c:\bayesx\output\s_f_district_random.res

Results for the sum of the structured and unstructured

spatial effects are stored in file

c:\bayesx\output\s_district_spatialtotal.res

Files of model summary:

---------------------------------------------------------------------------

Batch file for visualizing effects of nonlinear functions is stored in file

c:\bayesx\output\s_graphics.prg

NOTE: ’input filename’ must be substituted by the filename of the boundary-file

---------------------------------------------------------------------------

Batch file for visualizing effects of nonlinear functions

in S-Plus is stored in file

c:\bayesx\output\s_splus.txt
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NOTE: ’input filename’ must be substituted by the filename of the boundary-file

---------------------------------------------------------------------------

Latex file of model summary is stored in file

c:\bayesx\output\s_model_summary.tex

---------------------------------------------------------------------------

Note that variable rcw was removed from the model and variable bmi is modelled by a linear effect.

In addition to the information being printed to the output window results for each effect are writ-
ten to external ASCII files. The names of these files are given in the output window, compare
the previous pages. The files contain the posterior mean. For example, the beginning of file
c:\data\s_f_age_pspline.res for the effect of age looks like this:

intnr age pmean pqu2p5 pqu10 pmed pqu90 pqu97p5 pcat95 pcat80

1 0 1.0981 0 0 0 0 0 0 0

2 1 0.978917 0 0 0 0 0 0 0

3 2 0.867664 0 0 0 0 0 0 0

Note, that columns pmean to pcat80 contain no values. Methods for obtaining values for me-
dian, posterior 2.5%, 10%, 90% and 97.5% quantiles, and corresponding 95% and 80% posterior
probabilities of the estimated effects are described in section 3.7.

Some nonparametric effects are visualized by BayesX automatically and the resulting graphs are
stored in ps format. E.g. the effect of age is visualized in the file c:\data\s_f_age_pspline.ps

(compare the results on the previous pages for the other filenames). In addition to the postscript files
a file containing the commands to reproduce the graphics is stored in the output directory. In our
example the name of the file is c:\data\s_graphics.prg. The advantage is that additional options
may be added by the user to customize the graphs (compare the respective two subsubsections).

Moreover a file with ending .tex is created in the outfile directory. This file contains a summary
of the estimation results and may be compiled using LATEX.

There are two results files containing information about the selection process. File
c:\data\s_models.raw contains the base models used at the beginning of each iteration and the
finally selected model. File c:\data\s_criterium.raw shows changes in the value of the selection
criterion during the selection process.

Having finished the estimation we may close the log file by typing

> logclose

Note, that the log file is closed automatically when you exit BayesX.

3.7 Selection including calculation of confidence bands

stepwisereg objects allow both the calculation of conditional and unconditional confidence bands
for nonlinear functions.

3.7.1 Conditional confidence bands

Conditional confidence bands are calculated conditional on the selected model, i.e. they are com-
puted for selected variables and functions only. The computation of conditional confidence bands
is based on an MCMC-algorithm subsequent to the selection procedure. For the selection of a
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model with an adjacent computation of conditional confidence bands we can use method regress

of stepwisereg objects:

> s.regress hazstd = rcw + edu(factor) + tpr + sex + bmi(psplinerw2)

+ agc(psplinerw2) + district(spatial,map=m) + district(random),

CI=MCMCselect step=10 iterations=10000

family=gaussian predict using d

Options iterations and step define properties of the MCMC-algorithm. The total number of
MCMC iterations is given by iterations. Since, in general, these random numbers are correlated,
we do not use all of them but thin out the Markov chain by the thinning parameter step. Specifying
step=10 as above forces BayesX to store only every 10th sampled parameter which leads to a
random sample of length 1000 for every parameter in our example.

Note, that the choice of iterations also affects computation time. On a 2.4 GHz PC estimation
of our model took about ? minute and ? seconds, which is rather fast in regard of the complexity
of the model.

Now, file c:\data\s_f_age_pspline.res for the effect of age contains also results for median, pos-
terior 2.5%, 10%, 90% and 97.5% quantiles, and corresponding 95% and 80% posterior probabilities
of the estimated effects. The first few lines of the file looks like this:

intnr age pmean pqu2p5 pqu10 pmed pqu90 pqu97p5 pcat95 pcat80

1 0 1.09481 0.925783 0.984814 1.09623 1.20131 1.26294 1 1

2 1 0.977488 0.866704 0.906176 0.977659 1.04638 1.08583 1 1

3 2 0.867545 0.787211 0.815846 0.8677 0.918947 0.945463 1 1

The posterior quantiles and posterior probabilities may be changed by the user using the options
level1 and level2. For example specifying level1=99 and level2=70 in the options list of
the regress command leads to the computation of 0.5%, 15%, 85% and 99.5% quantiles of the
posterior. The defaults are level1=95 and level2=80.

3.7.2 Unconditional confidence bands

Unconditional confidence bands consider the uncertainty due to model selection. Unconditional
confidence bands are obtained using the following modified regress command:

> s.regress hazstd = rcw + edu(factor) + tpr + sex + bmi(psplinerw2)

+ agc(psplinerw2) + district(spatial,map=m) + district(random),

CI=MCMCbootstrap bootstrapsamples=99 step=10 iterations=10000

family=gaussian predict using d

Options iterations and step define properties of the MCMC-algorithm. The number of
iterations is divided equally between the bootstrap iterations. Here, for each of the 99 boot-
strap data sets (specified by bootstrapsamples=99) and the original data set 100 MCMC samples
are drawn. The thinning parameter is step =10, i.e. every 10th sampled parameter per data set
(i.e. 1000 samples altogether) are used for the computation of empirical quantiles. Note, that the
number of bootstrap data sets strongly affects computation time.

In addition to confidence bands, a kind of sensitivity analysis regarding model selection can be per-
formed using the estimation results. For the effect of age, file c:\data\s_f_age_pspline_df.raw
contains the number of times each modelling alternative was selected during the bootstrapping
process. This frequency distribution indicates the plausibility of the different modelling alterna-
tives, especially of the modelling alternative selected for the original data. The first few lines of file
c:\data\s_f_age_pspline_df.raw looks like this:

df value sp value frequency selected
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3.95883 1767.34 1 -

5.0261 634.521 21 -

5.96806 297.13 12 -

3.8 Visualizing estimation results

BayesX provides three alternatives for visualizing estimation results:

• As mentioned in the previous subsubsection, certain results are automatically visualized by
BayesX and stored in postscript files.

• Post estimation commands of stepwisereg objects allow to visualize results after having exe-
cuted a regress command.

• Graph objects may be used to produce graphics using the ASCII files containing the esti-
mation results. In principle graph objects allow the visualization of any content of a dataset
object. Graph files are also used in the batch file containing the commands to reproduce the
automatically generated graphics.

In this subsubsection we describe the general usage of the post estimation commands as well as
the commands for the usage with graph objects to enable the user to reproduce the automatically
generated plots directly in BayesX. 3.9 describes how to customize plots.

3.8.1 Post estimation commands

After having estimated a regression model with subsequent calculation of unconditional confidence
bands, i.e. having specified option CI=MCMCbootstrap, plots for nonparametric effects of contin-
uous covariates can be produced using the post estimation command plotnonp:

> s.plotnonp 1

and

> s.plotnonp 2

produce the graphs shown in 3.4 in an object-viewer window. The numbers following the plotnonp
command depend on the order in which the model terms have been specified. The numbers are
supplied in the output window after estimation, compare the results in the previous subsubsection.

By default the plots contain the posterior mean and pointwise credible intervals according to the
levels specified in the regress command. So by default the plot includes pointwise 80% and 95%
credible intervals. Note, however, that for a simple model selection without calculation of credible
bands only the effect itself can be plotted.

A plot may be stored in ps format using the outfile option. Executing

> s.plotnonp 1, replace outfile = c:\data\f_bmi.ps

stores the plot for the estimated effect of bmi in the file c:\data\f_bmi.ps. Again, specifying
replace allows BayesX to overwrite an existing file. Note, that BayesX does not display the graph
on the screen if the option outfile is specified.

Estimation results for spatial effects are best visualized by drawing the respective map and coloring
the regions of the map according to some characteristic of the posterior, e.g. the posterior mean.
For the structured spatial effect this can be achieved using the post estimation command drawmap

> s.drawmap 3

which results in the graph shown in 3.5.
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Figure 3.4: Effect of the body mass index of the child‘s mother and of the age of the child together
with pointwise 80% and 95% credible intervals.
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Figure 3.5: Posterior mean of the structured spatial effect.

3.8.2 Graph Objects

The commands presented in the previous paragraph work only after having estimated a regression
model in the current BayesX session but it may also be useful to visualize results of former analyses.
This can be achieved using graph objects. Note again, that graph files are also used in the batch
file containing the commands to reproduce the automatically generated graphics. Therefore the
purpose of this paragraph is also to enable the user to understand the content of this batch file.

First we read the estimation results into a dataset object. For example the estimation results for
the effect of bmi can be read into BayesX by executing the commands

> dataset res

> res.infile using c:\data\s_f_bmi_pspline.res

Now the estimation results (or any content of a dataset object) may be visualized using a graph
object which we create by typing

> graph g

The results stored in the dataset object res are now visualized using the plot command of graph
objects. Executing

> g.plot bmi pmean pqu2p5 pqu10 pqu90 pqu97p5 using res

reproduces the graph in 3.4.
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Similar as for plotnonp, the direct usage of the drawmap command is only possible after executing
a regress command. However, using graph objects again allows us to visualize results that have
been stored in a file.

First we read the information contained in this file into a dataset object. For example the following
command

> res.infile using c:\data\s_f_district_spatial.res

stores the estimation results for the structured spatial effect in the dataset object res. Now we
can visualize the posterior mean using method drawmap of graph objects leading again to the graph
shown in 3.5:

> g.drawmap pmean district, map=m using res

Since – in contrast to a stepwisereg object – no map object is associated with a graph object we have
to specify the map that we want to use explicitly in the options list.

Using graph objects also allows us to plot other characteristics of the posterior than the posterior
mean. For instance the posterior 95% probabilities may be visualized by

> g.drawmap pcat95 district, map=m using res

The result is shown in 3.6.

-1.0 0 1.0

Figure 3.6: Posterior 95% probability of the structured spatial effect.

A further advantage of graph objects is, that they allow to visualize the estimation results for the
uncorrelated spatial effects. Since these are modelled as unstructured random effects, BayesX is
unable to recognize them as spatial effects. However, proceeding as follows gives us the possibility
to plot the unstructured spatial effect shown in 3.7:

> res.infile using c:\data\s_f_district_random.res

> g.drawmap pmean district, map=m using res

3.9 Customizing graphics

This subsubsection describes how to customize graphics created in BayesX. All options are described
for the usage with the post estimation commands but may be used with graph files as well. So the
options presented in this subsubsection also enable the user to modify the batch file containing the
commands to reproduce the automatically generated graphics.

For the presentation of nonparametric effects it may be desirable to include only one of the credible
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Figure 3.7: Posterior mean of the unstructured spatial effect.

intervals into the plot. This is achieved by specifying the levels option. Possible values of this
option are 1 and 2, corresponding to the levels specified in the regress command (compare 3.7).
If the default values of level1 and level2 have been used, specifying levels=2 in the plotnonp

command causes BayesX to plot the 80% credible interval only (3.8):

> s.plotnonp 2, levels=2
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Figure 3.8: Effect of the age of the child with pointwise 80% credible interval only.

It may be useful to add some more information to the graphs of nonparametric effects to distinguish
more obviously between different covariates. Ways to do so are the specification of a title or the
specification of axis labels. Both possibilities are supported by BayesX as demonstrated in the
following examples (compare 3.9 for the resulting plots):

> s.plotnonp 1, title="Mother body mass index"

> s.plotnonp 1, xlab="bmi" ylab="f_bmi" title="Mother body mass index"

By default BayesX displays x- and y-axis with five equidistant ticks according to the range of the
data that is to be visualized. These defaults may be overwritten using the options xlimbottom,
xlimtop and xstep for the x-axis and ylimbottom, ylimtop and ystep for the y-axis, respectively.
The usage of these options is more or less self-explanatory and is demonstrated in the following
commands which lead to the graph shown in 3.10.

> s.plotnonp 1, xlab="bmi" ylab="f_bmi" title="Mother body mass index"

ylimbottom=-0.8 ylimtop=0.6 ystep=0.2 xlimbottom=12 xlimtop=40

3.10 also includes a graph for the effect of the age of the child that is customized in the same way
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Figure 3.9: Specification of title and axis labels.

as for the effect of bmi.

> s.plotnonp 2, xlab="age" ylab="f_age" title="Age of the child in months"

ylimbottom=-0.3 ystep=0.3 xlimbottom=0 xlimtop=60 xstep=10
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Figure 3.10: Re-defining x- and y-axis.

Now we turn to the options for method drawmap. By default drawmap uses grey scales to represent
different values of the posterior mean. Using the option color forces BayesX to use different colors
instead. Here the default would be to represent higher values through green colors and smaller
values through red colors. Specifying swapcolors switches this definition. Therefore the following
command

> s.drawmap 3, color swapcolors

leads to the graph shown in 3.11 with higher values being represented through red colors and
smaller values through green colors.

Similar options as for the visualization of nonparametric effects exist for method drawmap. For
example, a title may be included by specifying the option title

> s.drawmap 3, color swapcolors title="Structured spatial effect"

or the range of values to be displayed may be defined using the options lowerlimit and upperlimit:

> s.drawmap 3, color swapcolors title="Structured spatial effect" lowerlimit=-0.3

upperlimit=0.3
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Figure 3.11: Posterior mean of the structured spatial effect in color.

The graph produced by the second command is shown in 3.12.
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Structured spatial effect

Figure 3.12: Specifying a title and the range of the plot for spatial effects.
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